Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(44): e2209933119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279450

RESUMO

Circadian clocks are synchronized by external timing cues to align with one another and the environment. Various signaling pathways have been shown to independently reset the phase of the clock. However, in the body, circadian clocks are exposed to a multitude of potential timing cues with complex temporal dynamics, raising the question of how clocks integrate information in response to multiple signals. To investigate different modes of signal integration by the circadian clock, we used Circa-SCOPE, a method we recently developed for high-throughput phase resetting analysis. We found that simultaneous exposure to different combinations of known pharmacological resetting agents elicits a diverse range of responses. Often, the response was nonadditive and could not be readily predicted by the response to the individual signals. For instance, we observed that dexamethasone is dominant over other tested inputs. In the case of signals administered sequentially, the background levels of a signal attenuated subsequent resetting by the same signal, but not by signals acting through a different pathway. This led us to examine whether the circadian clock is sensitive to relative rather than absolute levels of the signal. Importantly, our analysis revealed the involvement of a signal-specific fold-change detection mechanism in the clock response. This mechanism likely stems from properties of the signaling pathway that are upstream to the clock. Overall, our findings elucidate modes of input integration by the circadian clock, with potential relevance to clock resetting under both physiological and pathological conditions.


Assuntos
Relógios Circadianos , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Transdução de Sinais , Sinais (Psicologia) , Dexametasona/farmacologia
2.
PLoS Biol ; 19(12): e3001492, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34968386

RESUMO

Rhythmicity of biological processes can be elicited either in response to environmental cycles or driven by endogenous oscillators. In mammals, the circadian clock drives about 24-hour rhythms of multitude metabolic and physiological processes in anticipation to environmental daily oscillations. Also at the intersection of environment and metabolism is the protein kinase-AKT. It conveys extracellular signals, primarily feeding-related signals, to regulate various key cellular functions. Previous studies in mice identified rhythmicity in AKT activation (pAKT) with elevated levels in the fed state. However, it is still unknown whether rhythmic AKT activation can be driven through intrinsic mechanisms. Here, we inspected temporal changes in pAKT levels both in cultured cells and animal models. In cultured cells, pAKT levels showed circadian oscillations similar to those observed in livers of wild-type mice under free-running conditions. Unexpectedly, in livers of Per1,2-/- but not of Bmal1-/- mice we detected ultradian (about 16 hours) oscillations of pAKT levels. Importantly, the liver transcriptome of Per1,2-/- mice also showed ultradian rhythms, corresponding to pAKT rhythmicity and consisting of AKT-related genes and regulators. Overall, our findings reveal ultradian rhythms in liver gene expression and AKT phosphorylation that emerge in the absence of environmental rhythms and Per1,2-/- genes.


Assuntos
Regulação da Expressão Gênica/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ritmo Ultradiano/genética , Animais , Células Cultivadas , Relógios Circadianos/genética , Expressão Gênica/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
3.
Mol Cell ; 62(4): 636-48, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27161994

RESUMO

Cells have evolved mechanisms to handle incompatible processes through temporal organization by circadian clocks and by spatial compartmentalization within organelles defined by lipid bilayers. Recent advances in lipidomics have led to identification of plentiful lipid species, yet our knowledge regarding their spatiotemporal organization is lagging behind. In this study, we quantitatively characterized the nuclear and mitochondrial lipidome in mouse liver throughout the day, upon different feeding regimens, and in clock-disrupted mice. Our analyses revealed potential connections between lipid species within and between lipid classes. Remarkably, we uncovered diurnal oscillations in lipid accumulation in the nucleus and mitochondria. These oscillations exhibited opposite phases and readily responded to feeding time. Furthermore, we found that the circadian clock coordinates the phase relation between the organelles. In summary, our study provides temporal and spatial depiction of lipid organization and reveals the presence and coordination of diurnal rhythmicity in intracellular organelles.


Assuntos
Núcleo Celular/metabolismo , Ritmo Circadiano , Comportamento Alimentar , Metabolismo dos Lipídeos , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Periodicidade , Animais , Ritmo Circadiano/genética , Genótipo , Masculino , Camundongos Knockout , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fenótipo , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34426495

RESUMO

Exercise and circadian biology are closely intertwined with physiology and metabolism, yet the functional interaction between circadian clocks and exercise capacity is only partially characterized. Here, we tested different clock mutant mouse models to examine the effect of the circadian clock and clock proteins, namely PERIODs and BMAL1, on exercise capacity. We found that daytime variance in endurance exercise capacity is circadian clock controlled. Unlike wild-type mice, which outperform in the late compared with the early part of their active phase, PERIODs- and BMAL1-null mice do not show daytime variance in exercise capacity. It appears that BMAL1 impairs and PERIODs enhance exercise capacity in a daytime-dependent manner. An analysis of liver and muscle glycogen stores as well as muscle lipid utilization suggested that these daytime effects mostly relate to liver glycogen levels and correspond to the animals' feeding behavior. Furthermore, given that exercise capacity responds to training, we tested the effect of training at different times of the day and found that training in the late compared with the early part of the active phase improves exercise performance. Overall, our findings suggest that clock proteins shape exercise capacity in a daytime-dependent manner through changes in liver glycogen levels, likely due to their effect on animals' feeding behavior.


Assuntos
Proteínas CLOCK/fisiologia , Tolerância ao Exercício/fisiologia , Condicionamento Físico Animal/fisiologia , Fatores de Transcrição ARNTL/fisiologia , Animais , Proteínas CLOCK/genética , Comportamento Alimentar , Feminino , Luz , Glicogênio Hepático/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Mutação , Proteínas Circadianas Period/fisiologia , Fotoperíodo , Caracteres Sexuais , Fatores de Tempo
5.
Proc Natl Acad Sci U S A ; 117(1): 779-786, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31848250

RESUMO

The occurrence and sequelae of disorders that lead to hypoxic spells such as asthma, chronic obstructive pulmonary disease, and obstructive sleep apnea (OSA) exhibit daily variance. This prompted us to examine the interaction between the hypoxic response and the circadian clock in vivo. We found that the global transcriptional response to acute hypoxia is tissue-specific and time-of-day-dependent. In particular, clock components differentially responded at the transcriptional and posttranscriptional level, and these responses depended on an intact circadian clock. Importantly, exposure to hypoxia phase-shifted clocks in a tissue-dependent manner led to intertissue circadian clock misalignment. This differential response relied on the intrinsic properties of each tissue and could be recapitulated ex vivo. Notably, circadian misalignment was also elicited by intermittent hypoxia, a widely used model for OSA. Given that phase coherence between circadian clocks is considered favorable, we propose that hypoxia leads to circadian misalignment, contributing to the pathophysiology of OSA and potentially other diseases that involve hypoxia.


Assuntos
Relógios Circadianos/fisiologia , Hipóxia/fisiopatologia , Fotoperíodo , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Humanos , Hipóxia/etiologia , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Oxigênio/metabolismo , RNA-Seq , Apneia Obstrutiva do Sono/etiologia
6.
Proc Natl Acad Sci U S A ; 113(12): E1673-82, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26862173

RESUMO

Mitochondria are major suppliers of cellular energy through nutrients oxidation. Little is known about the mechanisms that enable mitochondria to cope with changes in nutrient supply and energy demand that naturally occur throughout the day. To address this question, we applied MS-based quantitative proteomics on isolated mitochondria from mice killed throughout the day and identified extensive oscillations in the mitochondrial proteome. Remarkably, the majority of cycling mitochondrial proteins peaked during the early light phase. We found that rate-limiting mitochondrial enzymes that process lipids and carbohydrates accumulate in a diurnal manner and are dependent on the clock proteins PER1/2. In this conjuncture, we uncovered daily oscillations in mitochondrial respiration that peak during different times of the day in response to different nutrients. Notably, the diurnal regulation of mitochondrial respiration was blunted in mice lacking PER1/2 or on a high-fat diet. We propose that PERIOD proteins optimize mitochondrial metabolism to daily changes in energy supply/demand and thereby, serve as a rheostat for mitochondrial nutrient utilization.


Assuntos
Ritmo Circadiano/fisiologia , Mitocôndrias Hepáticas/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas Circadianas Period/fisiologia , Animais , Ritmo Circadiano/genética , Ciclo do Ácido Cítrico , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Transporte de Elétrons , Ácidos Graxos/metabolismo , Comportamento Alimentar/fisiologia , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/enzimologia , Atividade Motora , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética , Proteoma , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
8.
Cell Rep ; 40(7): 111213, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977481

RESUMO

High altitude exposes humans to hypobaric hypoxia, which induces various physiological and molecular changes. Recent studies point toward interaction between circadian rhythms and the hypoxic response, yet their human relevance is lacking. Here, we examine the effect of different high altitudes in conjunction with time of day on human whole-blood transcriptome upon an expedition to the highest city in the world, La Rinconada, Peru, which is 5,100 m above sea level. We find that high altitude vastly affects the blood transcriptome and, unexpectedly, does not necessarily follow a monotonic response to altitude elevation. Importantly, we observe daily variance in gene expression, especially immune-related genes, which is largely altitude dependent. Moreover, using a digital cytometry approach, we estimate relative changes in abundance of different cell types and find that the response of several immune cell types is time- and altitude dependent. Taken together, our data provide evidence for interaction between the transcriptional response to hypoxia and the time of day in humans.


Assuntos
Hipóxia , Transcriptoma , Altitude , Humanos , Hipóxia/genética , Transcriptoma/genética
9.
Nat Commun ; 12(1): 5903, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625543

RESUMO

Circadian clocks are self-sustained and cell-autonomous oscillators. They respond to various extracellular cues depending on the time-of-day and the signal intensity. Phase Transition Curves (PTCs) are instrumental in uncovering the full repertoire of responses to a given signal. However, the current methodologies for reconstructing PTCs are low-throughput, laborious, and resource- and time-consuming. We report here the development of an efficient and high throughput assay, dubbed Circadian Single-Cell Oscillators PTC Extraction (Circa-SCOPE) for generating high-resolution PTCs. This methodology relies on continuous monitoring of single-cell oscillations to reconstruct a full PTC from a single culture, upon a one-time intervention. Using Circa-SCOPE, we characterize the effects of various pharmacological and blood-borne resetting cues, at high temporal resolution and a wide concentration range. Thus, Circa-SCOPE is a powerful tool for comprehensive analysis and screening for circadian clocks' resetting cues, and can be valuable for basic as well as translational research.


Assuntos
Relógios Circadianos/fisiologia , Análise de Célula Única/métodos , Imagem com Lapso de Tempo/métodos , Animais , Ritmo Circadiano/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Células NIH 3T3 , Esteroides/sangue
10.
Nat Metab ; 3(6): 829-842, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34059820

RESUMO

The mammalian circadian system consists of a central clock in the brain that synchronizes clocks in the peripheral tissues. Although the hierarchy between central and peripheral clocks is established, little is known regarding the specificity and functional organization of peripheral clocks. Here, we employ altered feeding paradigms in conjunction with liver-clock mutant mice to map disparities and interactions between peripheral rhythms. We find that peripheral clocks largely differ in their responses to feeding time. Disruption of the liver-clock, despite its prominent role in nutrient processing, does not affect the rhythmicity of clocks in other peripheral tissues. Yet, unexpectedly, liver-clock disruption strongly modulates the transcriptional rhythmicity of peripheral tissues, primarily on daytime feeding. Concomitantly, liver-clock mutant mice exhibit impaired glucose and lipid homeostasis, which are aggravated by daytime feeding. Overall, our findings suggest that, upon nutrient challenge, the liver-clock buffers the effect of feeding-related signals on rhythmicity of peripheral tissues, irrespective of their clocks.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Ingestão de Energia , Fígado/fisiologia , Animais , Encéfalo/fisiologia , Metabolismo Energético , Comportamento Alimentar , Regulação da Expressão Gênica , Glucose/metabolismo , Metabolismo dos Lipídeos , Camundongos , Mutação , Especificidade de Órgãos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Transdução de Sinais
11.
Cell Metab ; 29(5): 1092-1103.e3, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773466

RESUMO

Daily rhythms in animal physiology are driven by endogenous circadian clocks in part through rest-activity and feeding-fasting cycles. Here, we examined principles that govern daily respiration. We monitored oxygen consumption and carbon dioxide release, as well as tissue oxygenation in freely moving animals to specifically dissect the role of circadian clocks and feeding time on daily respiration. We found that daily rhythms in oxygen and carbon dioxide are clock controlled and that time-restricted feeding restores their rhythmicity in clock-deficient mice. Remarkably, day-time feeding dissociated oxygen rhythms from carbon dioxide oscillations, whereby oxygen followed activity, and carbon dioxide was shifted and aligned with food intake. In addition, changes in carbon dioxide levels altered clock gene expression and phase shifted the clock. Collectively, our findings indicate that oxygen and carbon dioxide rhythms are clock controlled and feeding regulated and support a potential role for carbon dioxide in phase resetting peripheral clocks upon feeding.


Assuntos
Dióxido de Carbono/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Oxigênio/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Ingestão de Alimentos , Expressão Gênica/genética , Técnicas de Inativação de Genes , Locomoção/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Consumo de Oxigênio/genética , Proteínas Circadianas Period/genética , Ratos , Ratos Wistar , Respiração
12.
Cell Rep ; 22(13): 3468-3479, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590616

RESUMO

The tumor suppressor p53 limits tumorigenesis by inducing apoptosis, cell cycle arrest, and senescence. Although p53 is known to limit inflammation during tumor development, its role in regulating chronic lung inflammation is less well understood. To elucidate the function of airway epithelial p53 in such inflammation, we subjected genetically modified mice, whose bronchial epithelial club cells lack p53, to repetitive inhalations of lipopolysaccharide (LPS), an exposure that leads to severe chronic bronchitis and airway senescence in wild-type mice. Surprisingly, the club cell p53 knockout mice exhibited reduced airway senescence and bronchitis in response to chronic LPS exposure and were significantly protected from global lung destruction. Furthermore, pharmacological elimination of senescent cells also protected wild-type mice from chronic LPS-induced bronchitis. Our results implicate p53 in induction of club-cell senescence and correlate epithelial cell senescence of chronic airway inflammation and lung destruction.


Assuntos
Brônquios/metabolismo , Pneumonia/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Brônquios/patologia , Senescência Celular/fisiologia , Doença Crônica , Progressão da Doença , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/patologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-28066327

RESUMO

Circadian clocks orchestrate the daily changes in physiology and behavior of light-sensitive organisms. These clocks measure about 24 h and tick in a self-sustained and cell-autonomous manner. Mounting evidence points toward a tight intertwining between circadian clocks and metabolism. Although various aspects of circadian control of metabolic functions have been extensively studied, our knowledge regarding circadian mitochondrial function is rudimentary. In this review, we will survey the current literature related to the circadian nature of mitochondrial biology: from mitochondrial omics studies (e.g., proteome, acetylome, and lipidome), through dissection of mitochondrial morphology, to analyses of mitochondrial processes such as nutrient utilization and respiration. We will describe potential mechanisms that are implicated in circadian regulation of mitochondrial functions in mammals and discuss the possibility of a mitochondrial-autonomous oscillator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA