Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(11): 9323-9334, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37815669

RESUMO

BACKGROUND: Grain length, width, weight, and the number of grains per panicle are crucial determinants contributing to yield in cereal crops. Understanding the genetic basis of grain-related traits has been the main research object in crop science. METHODS AND RESULTS: Kerala has a collection of different rice landraces. Characterization of these valuable genetic resources for 39 distinct agro-morphological traits was carried out in two seasons from 2017 to 2019 directly in farmers field. Most characteristics were polymorphic except ligule shape, leaf angle, and panicle axis. The results of principal component analysis implied that leaf length, plant height, culm length, flag leaf length, and grain-related traits were the principal discriminatory characteristics of rice landraces. For identifying the genetic basis of key grain traits of rice, three multi locus GWAS models were performed based on 1,47,994 SNPs in 73 rice accessions. As a result, 48 quantitative trait nucleotides (QTNs) were identified to be associated with these traits. After characterization of their function and expression, 15 significant candidate genes involved in regulating grain width, number of grains per panicle, and yield were identified. CONCLUSIONS: The detected QTNs and candidate genes in this study could be further used for marker-assisted high-quality breeding of rice.


Assuntos
Grão Comestível , Oryza , Grão Comestível/genética , Locos de Características Quantitativas/genética , Oryza/genética , Oryza/anatomia & histologia , Fenômica , Melhoramento Vegetal
2.
BMC Plant Biol ; 21(1): 484, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34686134

RESUMO

BACKGROUND: Asian cultivars were predominantly represented in global rice panel selected for sequencing and to identify novel alleles for drought tolerance. Diverse genetic resources adapted to Indian subcontinent were not represented much in spite harboring useful alleles that could improve agronomic traits, stress resilience and productivity. These rice accessions are valuable genetic resource in developing rice varieties suited to different rice ecosystem that experiences varying drought stress level, and at different crop stages. A core collection of rice germplasm adapted to Southwestern Indian peninsular genotyped using SSR markers and characterized by contrasting water regimes to associate genomic regions for physiological, root traits and yield related traits. Genotyping-By-Sequencing of selected accessions within the diverse panel revealed haplotype variation in genic content within genomic regions mapped for physiological, morphological and root traits. RESULTS: Diverse rice panel (99 accessions) were evaluated in field and measurements on plant physiological, root traits and yield related traits were made over five different seasons experiencing varying drought stress intensity at different crop stages. Traits like chlorophyll stability index, leaf rolling, days to 50% flowering, chlorophyll content, root volume and root biomass were identified as best predictors of grain yield under stress. Association mapping revealed genetic variation among accessions and revealed 14 genomic targets associated with different physiological, root and plant production traits. Certain accessions were found to have beneficial allele to improve traits, plant height, root length and spikelet fertility, that contribute to the grain yield under stress. Genomic characterization of eleven accessions revealed haplotype variation within key genomic targets on chromosomes 1, 4, 6 and 11 for potential use as molecular markers to combine drought avoidance and tolerance traits. Genes mined within the genomic QTL intervals identified were prioritized based on tissue specific expression level in publicly available rice transcriptome data. CONCLUSION: The genetic and genomic resources identified will enable combining traits with agronomic value to optimize yield under stress and hasten trait introgression into elite cultivars. Alleles associated with plant height, specific leaf area, root length from PTB8 and spikelet fertility and grain weight from PTB26 can be harnessed in future rice breeding program.


Assuntos
Mapeamento Cromossômico , Desidratação/genética , Desidratação/fisiopatologia , Secas , Grão Comestível/genética , Genótipo , Oryza/genética , Grão Comestível/anatomia & histologia , Grão Comestível/crescimento & desenvolvimento , Variação Genética , Índia , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Fenótipo
3.
Breed Sci ; 66(5): 676-682, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28163583

RESUMO

This study was carried out with the aim of developing the methodology to determine elemental composition in wheat and identify the best germplasm for further research. Orphan and genetically diverse Afghan wheat landraces were chosen and EDXRF was used to measure the content of some of the elements to establish elemental composition in grains of 266 landraces using 10 reference lines. Four elements, K, Mg, P, and Fe, were measured by standardizing sample preparation. The results of hierarchical cluster analysis using elemental composition data sets indicated that the Fe content has an opposite pattern to the other elements, especially that of K. By systematic analysis the best wheat germplasms for P content and Fe content were identified. In order to compare the sensitivity of EDXRF, the ICP method was also used and the similar results obtained confirmed the EDXRF methodology. The sampling method for measurement using EDXRF was optimized resulting in high-throughput profiling of elemental composition in wheat grains at low cost. Using this method, we have characterized the Afghan wheat landraces and isolated the best genotypes that have high-elemental content and have the potential to be used in crop improvement.

4.
J Exp Bot ; 66(12): 3477-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25821073

RESUMO

Climate change has generated unpredictability in the timing and amount of rain, as well as extreme heat and cold spells that have affected grain yields worldwide and threaten food security. Sources of specific adaptation related to drought and heat, as well as associated breeding of genetic traits, will contribute to maintaining grain yields in dry and warm years. Increased crop photosynthesis and biomass have been achieved particularly through disease resistance and healthy leaves. Similarly, sources of drought and heat adaptation through extended photosynthesis and increased biomass would also greatly benefit crop improvement. Wheat landraces have been cultivated for thousands of years under the most extreme environmental conditions. They have also been cultivated in lower input farming systems for which adaptation traits, particularly those that increase the duration of photosynthesis, have been conserved. Landraces are a valuable source of genetic diversity and specific adaptation to local environmental conditions according to their place of origin. Evidence supports the hypothesis that landraces can provide sources of increased biomass and thousand kernel weight, both important traits for adaptation to tolerate drought and heat. Evaluation of wheat landraces stored in gene banks with highly beneficial untapped diversity and sources of stress adaptation, once characterized, should also be used for wheat improvement. Unified development of databases and promotion of data sharing among physiologists, pathologists, wheat quality scientists, national programmes, and breeders will greatly benefit wheat improvement for adaptation to climate change worldwide.


Assuntos
Adaptação Fisiológica/genética , Cruzamento/métodos , Mudança Climática , Variação Genética , Triticum/genética , Conservação dos Recursos Naturais
5.
BMC Plant Biol ; 14: 320, 2014 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-25432399

RESUMO

BACKGROUND: Landraces are an important source of genetic diversity in common wheat, but archival collections of Afghan wheat landraces remain poorly characterised. The recent development of array based marker systems, particularly single nucleotide polymorphism (SNP) markers, provide an excellent tool for examining the genetic diversity of local populations. Here we used SNP analysis to demonstrate the importance of Afghan wheat landraces and found tremendous genetic diversity and province-specific characteristics unique to this geographic region. RESULTS: A total of 446 Afghan wheat landraces were analysed using genotype by sequencing (GBS) arrays containing ~10 K unique markers. Pair-wise genetic distance analyses revealed significant genetic distances between landraces, particularly among those collected from distanced provinces. From these analyses, we were able to divide the landraces into 14 major classes, with the greatest degree of diversity evident among landraces isolated from Badakhshan province. Population-based analyses revealed an additional 15 sub-populations within our germplasm, and significant correlations were evident in both the provincial and botanical varieties. Genetic distance analysis was used to identify differences among provinces, with the strongest correlations seen between landraces from Herat and Ghor province, followed closely by those between Badakhshan and Takhar provinces. This result closely resembles existing agro-climatic zones within Afghanistan, as well as the wheat varieties commonly cultivated within these regions. Molecular variance analysis showed a higher proportion of intra-province variation among landraces compared with variation among all landraces as a whole. CONCLUSION: The SNP analyses presented here highlight the importance and genetic diversity of Afghan wheat landraces. Furthermore, these data strongly refute a previous analysis that suggested low genetic diverse within this germplasm. Ongoing analyses include phenotypic characterisation of these landraces to identify functional traits associated with individual genotypes. Taken together, these analyses can be used to help improve wheat cultivation in Afghanistan, while providing insights into the evolution and selective pressures underlying these distinct landraces.


Assuntos
Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Afeganistão , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Filogeografia , Proteínas de Plantas/metabolismo , Seleção Genética , Análise de Sequência de DNA , Triticum/classificação , Triticum/metabolismo
6.
Mol Biol Rep ; 36(8): 2111-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19105046

RESUMO

Intergeneric hybridization is an important strategy to introgress alien genes into common wheat for its improvement. But presence of cross ability barrier mechanism regulated by Kr1 gene played a major destructive role for hybridization than other reported genes. In order to know the underlying molecular mechanism and to dissect out this barrier, a new annealing system, ACP (anneling control primer) system was used in chromosome 5B (containing Kr1 gene) specific Recombinant Inbred Line (RIL) population. Two differentially expressed fragments for Kr1 gene was identified, cloned and sequenced. Further the expression was confirmed by northern blotting analysis. Sequence analysis of the resulted clones revealed classes of putative genes, including stress responsive and signal transduction.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Triticum/genética , Alelos , Primers do DNA , Flores/genética , Reação em Cadeia da Polimerase/métodos , Recombinação Genética , Triticum/metabolismo
7.
PLoS One ; 12(1): e0169416, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28072876

RESUMO

Profiling elemental contents in wheat grains and clarifying the underlying genetic systems are important for the breeding of biofortified crops. Our objective was to evaluate the genetic potential of 269 Afghan wheat landraces for increasing elemental contents in wheat cultivars. The contents of three major (Mg, K, and P) and three minor (Mn, Fe, and Zn) elements in wheat grains were measured by energy dispersive X-ray fluorescence spectrometry. Large variations in elemental contents were observed among landraces. Marker-based heritability estimates were low to moderate, suggesting that the elemental contents are complex quantitative traits. Genetic correlations between two locations (Japan and Afghanistan) and among the six elements were estimated using a multi-response Bayesian linear mixed model. Low-to-moderate genetic correlations were observed among major elements and among minor elements respectively, but not between major and minor elements. A single-response genome-wide association study detected only one significant marker, which was associated with Zn, suggesting it will be difficult to increase the elemental contents of wheat by conventional marker-assisted selection. Genomic predictions for major elemental contents were moderately or highly accurate, whereas those for minor elements were mostly low or moderate. Our results indicate genomic selection may be useful for the genetic improvement of elemental contents in wheat.


Assuntos
Genoma de Planta , Genômica/métodos , Triticum/genética , Afeganistão , Meio Ambiente , Interação Gene-Ambiente , Marcadores Genéticos , Variação Genética , Estudo de Associação Genômica Ampla , Fenótipo , Característica Quantitativa Herdável
8.
Plant Sci ; 252: 222-229, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717458

RESUMO

Mining of new genetic resources is of paramount importance to combat the alarming spread of stripe rust disease and breakdown of major resistance genes in wheat. We conducted a genome wide association study on 352 un-utilized Afghan wheat landraces against stripe rust resistance in eight locations. High level of disease variation was observed among locations and a core-set of germplasm showed consistence performance. Linkage disequilibrium (LD) decayed rapidly (R2≈0.16 at 0cM) due to germplasm peerless diversity. The mixed linear model resulted in ten marker-trait associations (MTAs) across all environments representing five QTL. The extensively short LD blocks required us to repeat the analysis with less diverse subset of 220 landraces in which R2 decayed below 0.2 at 0.3cM. The subset GWAS resulted in 36 MTAs clustered in nine QTL. The subset analysis validated three QTL previously detected in the full list analysis. Overall, the study revealed that stripe rust epidemics in the geographical origin of this germplasm through time have permitted for selecting novel resistance loci.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Fenótipo , Locos de Características Quantitativas , Triticum/microbiologia
9.
Genom Data ; 5: 260-2, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26484265

RESUMO

Fusarium head blight (FHB) is a destructive disease in wheat caused by Fusarium graminearum (F. g). It infects during the flowering stage favored by warm and highly humid climates. In order to understand possible wheat defense mechanism, gene expression analysis in response to F. g was undertaken in three genotypes of wheat, Japanese landrace cultivar Nobeokabouzu (highly resistant), Chinese cv. Sumai 3 (resistant) and Australian cv. Gamenya (susceptible). For microarray analysis, 3 and 7 days after inoculation (dai) samples were used in Agilent wheat custom array 4x38k. At 3 dai, the highest number of genes was up-regulated in Nobeokabouzu followed by Sumai 3 and minimum expression in Gamenya. Whereas at 7 dai, Sumai 3 expressed more genes compared to others. Further narrowing down by excluding commonly expressed genes in three genotypes and grouping according to the gene function has identified differentially high expression of genes involved in detoxification process such as multidrug resistant protein, multidrug resistance-associated protein, UDP-glycosyltransferase and ABC transporters in Nobeokabouzu at 3 dai. However in Sumai 3 many defense-related genes such as peroxidase, proteases and genes involved in plant cell wall defense at 7 dai were identified. These findings showed the difference of molecular defense mechanism among the cultivars in response to the pathogen. The complete data was accessed in NCBI GEO database with accession number GSE59721.

10.
Toxins (Basel) ; 7(2): 604-20, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25690694

RESUMO

Fusarium graminearum is responsible for Fusarium head blight (FHB), which is a destructive disease of wheat that makes its quality unsuitable for end use. To understand the temporal molecular response against this pathogen, microarray gene expression analysis was carried out at two time points on three wheat genotypes, the spikes of which were infected by Fusarium graminearum. The greatest number of genes was upregulated in Nobeokabouzu-komugi followed by Sumai 3, whereas the minimum expression in Gamenya was at three days after inoculation (dai). In Nobeokabouzu-komugi, high expression of detoxification genes, such as multidrug-resistant protein, multidrug resistance-associated protein, UDP-glycosyltransferase and ABC transporters, in addition to systemic defense-related genes, were identified at the early stage of infection. This early response of the highly-resistant genotype implies a different resistance response from the other resistant genotype, Sumai 3, primarily containing local defense-related genes, such as cell wall defense genes. In Gamenya, the expression of all three functional groups was minimal. The differences in these molecular responses with respect to the time points confirmed the variation in the genotypes. For the first time, we report the nature of gene expression in the FHB-highly resistant cv. Nobeokabouzu-komugi during the disease establishment stage and the possible underlying molecular response.


Assuntos
Fusarium/patogenicidade , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Transcriptoma , Triticum/genética , Perfilação da Expressão Gênica , Genótipo , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Triticum/microbiologia
11.
DNA Res ; 19(2): 165-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22334568

RESUMO

About 1 million expressed sequence tag (EST) sequences comprising 125.3 Mb nucleotides were accreted from 51 cDNA libraries constructed from a variety of tissues and organs under a range of conditions, including abiotic stresses and pathogen challenges in common wheat (Triticum aestivum). Expressed sequence tags were assembled with stringent parameters after processing with inbuild scripts, resulting in 37,138 contigs and 215,199 singlets. In the assembled sequences, 10.6% presented no matches with existing sequences in public databases. Functional characterization of wheat unigenes by gene ontology annotation, mining transcription factors, full-length cDNA, and miRNA targeting sites were carried out. A bioinformatics strategy was developed to discover single-nucleotide polymorphisms (SNPs) within our large EST resource and reported the SNPs between and within (homoeologous) cultivars. Digital gene expression was performed to find the tissue-specific gene expression, and correspondence analysis was executed to identify common and specific gene expression by selecting four biotic stress-related libraries. The assembly and associated information cater a framework for future investigation in functional genomics.


Assuntos
Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica/métodos , Genes de Plantas , Triticum/genética , Biologia Computacional/métodos , DNA Complementar/isolamento & purificação , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Triticum/crescimento & desenvolvimento
12.
DNA Res ; 17(4): 211-22, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20360266

RESUMO

Gene expression after leaf rust infection was compared in near-isogenic wheat lines differing in the Lr10 leaf rust resistance gene. RNA from susceptible and resistant plants was used for cDNA library construction. In total, 55 008 ESTs were sequenced from the two libraries, then combined and assembled into 14 268 unigenes for further analysis. Of these ESTs, 89% encoded proteins similar to (E value of < or =10(-5)) characterized or annotated proteins from the NCBI non-redundant database representing diverse molecular functions, cellular localization and biological processes based on gene ontology classification. Further, the unigenes were classified into susceptible and resistant classes based on the EST members assembled from the respective libraries. Several genes from the resistant sample (14-3-3 protein, wali5 protein, actin-depolymerization factor and ADP-ribosylation factor) and the susceptible sample (brown plant hopper resistance protein, caffeic acid O-methyltransferase, pathogenesis-related protein and senescence-associated protein) were selected and their differential expression in the resistant and susceptible samples collected at different time points after leaf rust infection was confirmed by RT-PCR analysis. The molecular pathogenicity of leaf rust in wheat was studied and the EST data generated made a foundation for future studies.


Assuntos
Basidiomycota/patogenicidade , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica/métodos , Genes de Plantas , Triticum/genética , Triticum/microbiologia , Basidiomycota/genética , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA