Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 14(20): 14126-14138, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38686287

RESUMO

Magnetic nanocomposites (MNC) are promising theranostic platforms with tunable physicochemical properties allowing for remote drug delivery and multimodal imaging. Here, we developed doxorubicin-loaded Fe3O4-Au MNC (DOX-MNC) using electron beam physical vapor deposition (EB-PVD) in combination with magneto-mechanochemical synthesis to assess their antitumor effect on Walker-256 carcinosarcoma under the influence of a constant magnetic (CMF) and electromagnetic field (EMF) by comparing tumor growth kinetics, magnetic resonance imaging (MRI) scans and electron spin resonance (ESR) spectra. Transmission (TEM) and scanning electron microscopy (SEM) confirmed the formation of spherical magnetite nanoparticles with a discontinuous gold coating that did not significantly affect the ferromagnetic properties of MNC, as measured by vibrating-sample magnetometry (VSM). Tumor-bearing animals were divided into the control (no treatment), conventional doxorubicin (DOX), DOX-MNC and DOX-MNC + CMF + EMF groups. DOX-MNC + CMF + EMF resulted in 14% and 16% inhibition of tumor growth kinetics as compared with DOX and DOX-MNC, respectively. MRI visualization showed more substantial tumor necrotic changes after the combined treatment. Quantitative analysis of T2-weighted (T2W) images revealed the lowest value of skewness and a significant increase in tumor intensity in response to DOX-MNC + CMF + EMF as compared with the control (1.4 times), DOX (1.6 times) and DOX-MNC (1.8 times) groups. In addition, the lowest level of nitric oxide determined by ESR was found in DOX-MNC + CMF + EMF tumors, which was close to that of the muscle tissue in the contralateral limb. We propose that the reason for the relationship between the observed changes in MRI and ESR is the hyperfine interaction of nuclear and electron spins in mitochondria, as a source of free radical production. Therefore, these results point to the use of EB-PVD and magneto-mechanochemically synthesized Fe3O4-Au MNC loaded with DOX as a potential candidate for cancer magnetic nanotheranostic applications.

2.
Sci Rep ; 11(1): 3589, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574479

RESUMO

Microvesicles (MVs) are large extracellular vesicles differing in size, cargo and composition that share a common mechanism of release from the cells through the direct outward budding of the plasma membrane. They are involved in a variety of physiological and pathological conditions and represent promising biomarkers for diseases. MV heterogeneity together with the lack of specific markers had strongly hampered the development of effective methods for MV isolation and differential centrifugation remains the most used method to purify MVs. In this study, we analysed the capacity of the differential centrifugation method to isolate MVs from cell-conditioned medium using flow cytometry and TEM/AFM microscopy. We found that the loss of MVs (general population and/or specific subpopulations) represents a major and underestimate drawback of the differential centrifugation protocol. We demonstrate that the choice of the appropriate rotor type (fixed-angle vs swinging-bucket) and the implementation of an additional washing procedure to the first low-speed centrifugation step of the protocol allow to overcome this problem increasing the total amount of isolated vesicles and avoiding the selective loss of MV subpopulations. These parameters/procedures should be routinely employed into optimized differential centrifugation protocols to ensure isolation of the high-quantity/quality MVs for the downstream analysis/applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA