Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1848(8): 1629-38, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25911208

RESUMO

We performed comparative DSC and FTIR spectroscopic measurements of the effects of ß-sitosterol (Sito) and stigmasterol (Stig) on the thermotropic phase behavior and organization of DPPC bilayers. Sito and Stig are the major sterols in the biological membranes of higher plants, whereas cholesterol (Chol) is the major sterol in mammalian membranes. Sito differs in structure from Chol in having an ethyl group at C24 of the alkyl side-chain, and Stig in having both the C24 ethyl group and trans-double bond at C22. Our DSC studies indicate that the progressive incorporation of Sito and Stig decrease the temperature and cooperativity of the pretransition of DPPC to a slightly lesser and greater extent than Chol, respectively, but the pretransition persists to 10 mol % sterol concentration in all cases. All three sterols produce essentially identical effects on the thermodynamic parameters of the sharp component of the DPPC main phase transition. However, the ability to increase the temperature and decrease the cooperativity and enthalpy of the broad component decreases in the order Chol>Sito>Stig. Nevertheless, at higher Sito/Stig concentrations, there is no evidence of sterol crystallites. Our FTIR spectroscopic studies demonstrate that Sito and especially Stig incorporation produces a smaller ordering of the hydrocarbon chains of fluid DPPC bilayers than does Chol. In general, the presence of a C24 ethyl group in the alkyl side-chain reduces the characteristic effects of Chol on the thermotropic phase behavior and organization of DPPC bilayer membranes, and a trans-double bond at C22 magnifies this effect.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Colesterol/química , Bicamadas Lipídicas , Sitosteroides/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estigmasterol/química , Temperatura , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Colestadienóis/química , Colesterol/análogos & derivados , Colesterol/metabolismo , Estrutura Molecular , Transição de Fase , Fitosteróis/química , Sitosteroides/metabolismo , Estigmasterol/metabolismo
2.
Biochemistry ; 50(46): 9982-97, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21951051

RESUMO

We performed differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopic measurements to study the effects of lathosterol (Lath) on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes and compared our results with those previously reported for cholesterol (Chol)/DPPC binary mixtures. Lath is the penultimate intermediate in the biosynthesis of Chol in the Kandutsch-Russell pathway and differs from Chol only in the double bond position in ring B, which is between C7 and C8 in Lath and between C5 and C6 in Chol. Our DSC studies indicate that the incorporation of Lath is more effective than Chol in reducing the temperature and enthalpy of the DPPC pretransition. At lower sterol concentrations (≤10 mol %), incorporation of both Lath and Chol decreases the temperature, enthalpy, and cooperativity of the sharp component of the main phase transition of DPPC to a similar extent, but at higher sterol concentrations, Lath is more effective at decreasing the phase transition temperature, enthalpy, and cooperativity than Chol. These results indicate that at higher concentrations, Lath is more disruptive of DPPC gel-state bilayer packing than Chol is. Moreover, incorporation of Lath decreases the temperature of the broad component of the main phase transition of DPPC, whereas Chol increases it; this difference in the direction and magnitude of the temperature shift is accentuated at higher sterol concentrations. Although at sterol concentrations of ≤20 mol % Lath and Chol are almost equally effective at reducing the enthalpy and cooperativity of the broad component of the main phase transition, at higher sterol levels Lath is less effective than Chol in these regards and does not completely abolish the cooperative hydrocarbon chain melting phase transition at 50 mol %, as does Chol. These latter results indicate that Lath both is more disruptive with respect to the low-temperature state of the sterol-enriched domains of DPPC bilayers and has a lower lateral miscibility in DPPC bilayers than Chol. Our FTIR spectroscopic studies suggest that Lath incorporation produces a less tightly packed bilayer than does Chol at both low (gel state) and high (liquid-crystalline state) temperatures, which is characterized by increased H-bonding between water and the carbonyl groups of the fatty acyl chains in the DPPC bilayer. Overall, our studies indicate that Lath and Chol incorporation can have rather different effects on the thermotropic phase behavior and organization of DPPC bilayers and thus that the position of the double bond in ring B of a sterol molecule can have an appreciable effect on the physical properties of sterol molecules.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Bicamadas Lipídicas/química , Varredura Diferencial de Calorimetria , Modelos Moleculares , Transição de Fase , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
3.
Biochim Biophys Acta ; 1798(3): 376-88, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19761759

RESUMO

We performed comparative DSC and FTIR spectroscopic measurements of the effects of cholesterol (Chol) and ergosterol (Erg) on the thermotropic phase behavior and organization of DPPC bilayers. Ergosterol is the major sterol in the biological membranes of yeasts, fungi and many protozoa. It differs from Chol in having two additional double bonds, one in the steroid nucleus at C7-8 and another in the alkyl chain at C22-23. Erg also has an additional methyl group in the alkyl chain at C24. Our DSC studies indicate that the incorporation of Erg is more effective than Chol is in reducing the enthalpy of the pretransition. At lower concentrations Erg is also more effective than Chol in reducing the enthalpies of both the sharp and broad components of main phase transition. However, at sterol concentrations from 30 to 50 mol%, Erg is generally less effective at reducing the enthalpy of the broad components and does not completely abolish the cooperative hydrocarbon chain-melting phase transition at 50 mol%, as does Chol. Nevertheless, in this higher ergosterol concentration range, there is no evidence of the formation of ergosterol crystallites. Our FTIR spectroscopic studies demonstrate that Erg incorporation produces a similar ordering of liquid-crystalline DPPC bilayers as does Chol, but an increased degree of hydrogen bonding of the fatty acyl carbonyl groups in the glycerol backbone region of the DPPC bilayer. These and other results indicate that Erg is less miscible in DPPC bilayers at higher concentrations than is Chol. Finally, we provide a tentative molecular explanation for the comparative experimental and computation results obtained for Erg and Chol in phospholipid bilayers, emphasizing the dynamic conformational differences between these two sterols.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/farmacologia , Ergosterol/farmacologia , Bicamadas Lipídicas/química , Membranas Artificiais , Transição de Fase/efeitos dos fármacos , Temperatura , Varredura Diferencial de Calorimetria , Colesterol/química , Ergosterol/química , Ésteres/química , Lipossomos , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Biochim Biophys Acta ; 1778(10): 2191-202, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18539134

RESUMO

We carried out comparative differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol (Chol) and epicholesterol (EChol) on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine (DPPC) bilayers. EChol is an epimer of Chol in which the axially oriented hydroxyl group of C3 of Chol is replaced by an equatorially oriented hydroxyl group, resulting in a different orientation of the hydroxyl group relative to sterol fused ring system. Our calorimetric studies indicate that the incorporation of EChol is more effective than Chol is in reducing the enthalpy of the pretransition of DPPC. EChol is also initially more effective than Chol in reducing the enthalpies of both the sharp and broad components of the main phase transition of DPPC. However, at higher EChol concentrations (~30-50 mol%), EChol becomes less effective than Chol in reducing the enthalpy and cooperativity of the main phase transition, such that at sterol concentrations of 50 mol%, EChol does not completely abolish the cooperative hydrocarbon chain-melting phase transition of DPPC, while Chol does. However, EChol does not appear to form a calorimetrically detectable crystallite phase at higher sterol concentrations, suggesting that EChol, unlike Chol, may form dimers or lower order aggregates at higher sterol concentrations. Our spectroscopic studies demonstrate that EChol incorporation produces more ordered gel and comparably ordered liquid-crystalline bilayers compared to Chol, which are characterized by increased hydrogen bonding in the glycerol backbone region of the DPPC bilayer. These and other results indicate that monomeric EChol is less miscible in DPPC bilayers than is Chol at higher sterol concentrations, but perturbs their organization to a greater extent at lower sterol concentrations, probably due primarily to the larger effective cross-sectional area of the EChol molecule. Nevertheless, EChol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Bicamadas Lipídicas/química , Membranas/química , Varredura Diferencial de Calorimetria , Modelos Moleculares , Termodinâmica
5.
Methods Mol Biol ; 400: 171-95, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17951734

RESUMO

Differential scanning calorimetry (DSC) is a relatively rapid, straightforward, and nonperturbing technique for studying the thermotropic phase behavior of hydrated lipid dispersions and of reconstituted lipid model or biological membranes. However, because of the diversity of lipid thermotropic phase behavior, data-acquisition and data-analysis protocols must be modified according to the nature of the phase transition under investigation. In this chapter, the theoretical basis of the DSC experiment is examined and, with the aid of specific examples, also how the information content of DSC thermograms is affected by the nature of the lipid phase transition examined. The overall goal is to provide practical guidelines for the development of data-acquisition and data-analysis protocols, which are compatible with the instrumentation available and the nature of the lipid phase transition under investigation.


Assuntos
Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Modelos Químicos , Transição de Fase , Termodinâmica
6.
Chem Phys Lipids ; 148(1): 26-50, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17524381

RESUMO

The thermotropic phase behaviour of aqueous dispersions of some synthetic 1,2-di-O-alkyl-3-O-(beta-D-galactosyl)-rac-glycerols (rac-beta-D-GalDAGs) with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle (WAXS) X-ray diffraction. DSC heating curves show a complex pattern of lamellar (L) and nonlamellar (NL) phase polymorphism dependent on the sample's thermal history. On cooling from 95 degrees C and immediate reheating, rac-beta-D-GalDAGs typically show a single, strongly energetic phase transition, corresponding to either a lamellar gel/liquid-crystalline (L(beta)/L(alpha)) phase transition (N< or =15 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (N> or =16). At higher temperatures, some shorter chain compounds (N=10-13) exhibit additional endothermic phase transitions, identified as L/NL phase transitions using SAXS/WAXS. The NL morphology and the number of associated intermediate transitions vary with hydrocarbon chain length. Typically, at temperatures just above the L(alpha) phase boundary, a region of phase coexistence consisting of two inverted cubic (Q(II)) phases are observed. The space group of the cubic phase seen on initial heating has not been determined; however, on further heating, this Q(II) phase disappears, enabling the identification of the second Q(II) phase as Pn3 m (space group Q(224)). Only the Pn3 m phase is seen on cooling. Under suitable annealing conditions, rac-beta-D-GalDAGs rapidly form highly ordered lamellar-crystalline (L(c)) phases at temperatures above (N< or =15) or below (N=16-18) the L(beta)/L(alpha) phase transition temperature (T(m)). In the N< or =15 chain length lipids, DSC heating curves show two overlapping, highly energetic, endothermic peaks on heating above T(m); corresponding changes in the first-order spacings are observed by SAXS, accompanied by two different, complex patterns of reflections in the WAXS region. The WAXS data show that there is a difference in hydrocarbon chain packing, but no difference in bilayer dimensions or hydrocarbon chain tilt for these two L(c) phases (termed L(c1) and L(c2), respectively). Continued heating of suitably annealed, shorter chain rac-beta-D-GalDAGs from the L(c2) phase results in a phase transition to an L(alpha) phase and, on further heating, to the same Q(II) or H(II) phases observed on first heating. On reheating annealed samples with longer chain lengths, a subgel phase is formed. This is characterized by a single, poorly energetic endotherm visible below the T(m). SAXS/WAXS identifies this event as an L(c)/L(beta) phase transition. However, the WAXS reflections in the di-16:0 lipid do not entirely correspond to the reflections seen for either the L(c1) or L(c2) phases present in the shorter chain rac-beta-D-GalDAGs; rather these consist of a combination of L(c1), L(c2) and L(beta) reflections, consistent with DSC data where all three phase transitions occur within a span of 5 degrees C. At very long chain lengths (N> or =19), the L(beta)/L(c) conversion process is so slow that no L(c) phases are formed over the time scale of our experiments. The L(beta)/L(c) phase conversion process is significantly faster than that seen in the corresponding rac-beta-D-GlcDAGs, but is slower than in the 1,2-sn-beta-D-GalDAGs already studied. The L(alpha)/NL phase transition temperatures are also higher in the rac-beta-D-GalDAGs than in the corresponding rac-beta-D-GlcDAGs, suggesting that the orientation of the hydroxyl at position 4 and the chirality of the glycerol molecule in the lipid/water interface influence both the L(c) and NL phase properties of these lipids, probably by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.


Assuntos
Galactolipídeos/química , Termodinâmica , Varredura Diferencial de Calorimetria , Galactolipídeos/síntese química , Modelos Moleculares , Estrutura Molecular , Transição de Fase , Estereoisomerismo , Difração de Raios X
7.
Chem Phys Lipids ; 188: 10-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25804450

RESUMO

We present the results of a comparative differential calorimetric and Fourier transform infrared spectroscopic study of the effect of cholesterol and five analogues on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes. These sterols/steroids differ in both the nature and stereochemistry of the polar head group at C3 (ß-OH, α-OH or CO) and in the presence or absence of a double bond in ring B and in the orientation of rings A and B. The Δ(5) sterols/steroid have a trans rather than a cis ring A/B junction, and the concentration of these compounds required to abolish the DPPC pretransition, inversely related to their relative ability to disorder gel state DPPC bilayers, decreases in the order ß-OH > α-OH > CO. However, in the saturated ring junction-inverted (cis) series, these concentrations are much more similar, regardless of polar head group chemical structure. Similarly, the residual enthalpy of the DPPC main phase transition at 50 mol% sterol/steroid, which is inversely related to the miscibility of these compounds in fluid DPPC bilayers, also increases in the order ß-OH > α-OH > CO, but this effect is attenuated in the saturated series with an inverted ring A/B orientation. Moreover, replacement of the double bond at C5-C6 with a saturated linkage and inversion of the ring A/B junction reduces both sterol/steroid solubility and the ability to order the hydrocarbon chains of fluid DPPC molecules all cases. Thus, the characteristic effects of sterols/steroids on fluid lipid bilayers are generally optimal when an OH group rather than CO group is present at C3, and when this OH group is in the equatorial (ß) orientation, and when the orientation of the ring A/B fusion is trans rather than cis. Overall, these results demonstrate that variations in the saturation and stereochemistry of the steroid ring system influence the effect of variations in the nature and stereochemistry of the polar headgroup at C3 on the physical properties of phospholipid bilayers and vice versa. Moreover, the presence of a single double bond specifically at Δ(5) is required to maximize sterol solubility in fluid DPPC bilayers.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Colestanos/química , Colestanol/química , Bicamadas Lipídicas/química , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Chem Phys Lipids ; 187: 34-49, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25732198

RESUMO

We present the results of a comparative differential calorimetric and Fourier transform infrared spectroscopic study of the effect of cholesterol and five analogs on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. These sterols/steroids differ in both the nature and stereochemistry of the polar head group at C3 (ß-OH, α-OH or C=O) and in the presence or absence of a double bond in ring B. In both the Δ(5) and saturated sterols/steroid series, the concentration of these compounds required to abolish the DPPC pretransition, inversely related to their relative ability to disorder gel state DPPC bilayers, decreases in the order ß-OH > α-OH > C=O. However, in the saturated series, these concentrations are much more similar, regardless of polar head group chemical structure. Similarly, the residual enthalpy of the DPPC main phase transition at 50 mol% sterol/steroid, inversely related to the miscibility of these compounds in fluid DPPC bilayers, also increases in the order ß-OH > α-OH > C=O, but this effect is again attenuated in the saturated series. Moreover, replacement of the double bond at C5 with a saturated linkage also reduces sterol/steroid solubility in all cases. Interestingly, the C5 double bond has no effect on DPPC hydrocarbon chain ordering in the ßOH sterol pair, considerably increases ordering in the αOH pair, and considerably reduces ordering in the C=O pair. Moreover, the ability of these compounds to order the DPPC hydrocarbon chains decreases in the order ß-OH > α-OH > C=O in the Δ(5) series of compounds, but in the order ß-OH > C=O > α-OH in the saturated series. Our results indicate that the effects of the presence or absence of a double bond at C5 of ring B on the thermotropic phase behavior and organization of DPPC bilayers are influenced by the nature and stereochemistry of the polar group present at C3 and vice versa. Nevertheless, the characteristic effects of sterols/steroids on fluid lipid bilayers are optimal when an OH group rather than C=O group is present at C3, and when this OH group is in the equatorial (ß) orientation. Moreover, the presence of a single double bond specifically at C5 is required to maximize sterol solubility in fluid DPPC bilayers, which is probably its primary function in natural sterols.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Colestanol/química , Bicamadas Lipídicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Sítios de Ligação , Fluidez de Membrana , Transição de Fase , Temperatura
9.
Chem Phys Lipids ; 117(1-2): 19-27, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12191841

RESUMO

The large intrinsic membrane dipole potential, phi(d), is important for protein insertion and functioning as well as for ion transport across natural and model membranes. However, the origin of phi(d) is controversial. From experiments carried out with lipid monolayers, a significant dependence on the fatty acid chain length is suggested, whereas in experiments with lipid bilayers, the contribution of additional -CH(2)-groups seems negligibly small compared with that of the phospholipid carbonyl groups and lipid-bound water molecules. To compare the impact of the -CH(2)-groups of dipalmitoylphosphatidylcholine (DPPC) near and far from the glycerol backbone, we have varied the structure of DPPC by incorporation of sulfur atoms in place of methylene groups in different positions of the fatty acid chain. The phi(d) of symmetric lipid bilayers containing one heteroatom was obtained from the charge relaxation of oppositely charged hydrophobic ions. We have found that the substitution for a S-atom of a -CH(2)-group decreases phi(d). The effect (deltaphi(d) = -22.6 mV) is most pronounced for S-atoms near the lipid head group while a S-atom substitution in the C(13)- or C(14)-position of the hydrocarbon chain does not effect the bilayer dipole potential. Most probably deltaphi(d) does not originate from an altered dipole potential of the acyl chain containing an heteroatom but is mediated by the disruption of chain packing, leading to a decreased density of lipid dipoles in the membrane.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Ácidos Graxos/química , Potenciais da Membrana , Bicamadas Lipídicas
10.
Chem Phys Lipids ; 183: 142-58, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24997357

RESUMO

We present the results of a comparative differential calorimetric and Fourier transform infrared spectroscopic study of the effect of cholesterol and five analogues on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes. These sterols/steroids differ in both the nature and stereochemistry of the polar head group at C3 (ßOH, αOH or C=O) and in the position(s) of the double bond(s). In the Δ(5) sterols/steroid series, the concentration of these compounds required to abolish the DPPC pretransition, inversely related to their relative ability to disorder gel state DPPC bilayers, decreases markedly in the order ßOH>αOH>C=O. However, in the Δ(4,6) series, these concentrations are similar, regardless of polar head group chemical structure. Similarly, the residual enthalpy of the DPPC main phase transition at 50mol% sterol/steroid, which is inversely related to the miscibility of these compounds in the DPPC bilayer, also increases in the order ßOH>αOH>C=O, but this effect is attenuated in the Δ(4,6) series. In the two pairs of sterol epimers, the Δ(4,6) compounds exhibit a greater decrease in the temperature and enthalpy of both the pretransition and the main phase transition, whereas the opposite result is observed in the ketosteroid pair. Similarly, the ability of these compounds to order the DPPC hydrocarbon chains decreases in the order ßOH>αOH>C=O in both series of compounds, but in the two pairs of sterol epimers, hydrocarbon chain ordering is greater for the Δ(5) than the Δ(4,6) sterols, whereas the opposite is the case for the steroid pair. Thus, the characteristic effects of sterols/steroids on fluid lipid bilayers are optimal when an OH group rather than C=O group is present at C3, and when this OH group is in the equatorial orientation. We suggest that the presence of keto-enol tautomerism in the conjugated Δ(4,6) ketosteroid may provide additional H-bonding opportunities to adjacent DPPC molecules in the bilayer, which results in more cholesterol-like effects.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Colestadienos/química , Fluidez de Membrana , Espectroscopia de Infravermelho com Transformada de Fourier , Teste de Materiais , Transição de Fase , Temperatura
11.
Chem Phys Lipids ; 177: 71-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24296232

RESUMO

We present the results of a comparative differential calorimetric and Fourier transform infrared spectroscopic study of the effect of cholesterol and five of its analogues on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes. These sterols/steroids differ in both the nature and stereochemistry of the polar head group at C3 (ßOH, αOH or C=O) and in the position of the double bond (C4-C5 in ring A or C5-C6 in ring B). In the three Δ(5) sterols/steroid series, the concentration of these compounds required to abolish the DPPC pretransition, inversely related to their relative ability to disorder gel state DPPC bilayers, decreases in the order ßOH>αOH>C=O and these differences in concentration are significant. However, in the Δ(4) series, these concentrations are more similar, regardless of polar head group nature or stereochemistry. Similarly, the residual enthalpy of the main phase transition of DPPC at 50 mol.% sterol/steroid, which is inversely related to the miscibility of these compounds in the DPPC bilayer, also increases in the order ßOH>αOH>C=O, but this effect is attenuated in the Δ(4) as opposed to the Δ(5) series. Both of these results indicate that the presence of a double bond at C4-C5 in ring A, as compared to a C5-C6 double bond in ring B, reduces the effect of variations in the structure of the polar group at C3 on the properties of the host DPPC bilayer. The movement of the double bond from C5 to C4 in the two sterol pairs results in a greater decrease in the temperature and enthalpy of both the pretransition and the main phase transition, whereas the opposite result is observed in the ketosteroid pair. Similarly, the ability of these compounds to order the DPPC hydrocarbon chains decreases in the order ßOH>αOH>C=O in both series of compounds, but in the two sterol pairs, hydrocarbon chain ordering is greater for the Δ(5) than the Δ(4) sterols, whereas the opposite is the case for the steroid pair. All of these results indicate that the typical effects of sterols/steroids in increasing the packing density and thermal stability of fluid lipid bilayers are optimal when an OH group rather than C=O group is present at C3, and that this OH group is more effective in the equatorial rather than the axial orientation. We can explain all of our sterol results by noting that the shift of the double bond from Δ(5) to Δ(4) introduces of a bend in ring A, which in turn destroys the coplanarity of the steroid fused ring system and reduces the goodness of sterol packing in the host DPPC bilayer. However, this conformational change should also occur in the ketosteroid pair, yet our experimental results indicate that the presence of the Δ(4) double bond is less disruptive than a double bond at Δ(5). We suggest that the presence of keto-enol tautomerism in the conjugated Δ(4) ketosteroid, but not in the nonconjugated Δ(5) compound, may provide additional H-bonding opportunities to adjacent DPPC molecules in the bilayer, which can overcome the unfavourable conformational change in ring A induced by the Δ(4) double bond.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Membrana Celular/efeitos dos fármacos , Colestenonas/química , Colestenonas/farmacologia , Bicamadas Lipídicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Absorção , Varredura Diferencial de Calorimetria , Membrana Celular/química , Modelos Moleculares , Conformação Molecular , Transição de Fase/efeitos dos fármacos , Estereoisomerismo
12.
Chem Phys Lipids ; 164(1): 70-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21055393

RESUMO

We report here our differential scanning calorimetry measurements investigating the thermotropic phase behaviour of binary dipalmitoylphosphatidylcholine (DPPC)/sterol mixtures containing two saturated sterols with different ring configurations (5ß-H and either 3α-OH or 3ß-OH). These measurements differ in the proportions of sharp and broad components in the heating endotherms, representing the melting of the sterol-poor and sterol-rich lipid micro-domains of the DPPC bilayer, respectively. Our results suggest that the 5,10-cis ring configuration of both saturated sterols and the ring A conformations have the greatest influence on DPPC bilayer properties, most likely by inducing small increases in the mean area/molecule as compared to cholesterol. However, the C3-OH orientation also influences sterol miscibility, likely due to variations in the strength and number of interfacial H-bonds with changes in molecular area, which in turn probably reflect the depth of the sterol in the DPPC bilayer. This influence of C3-OH orientation is significantly greater than was observed in our earlier study of cholesterol/- and epicholesterol/DPPC mixtures. Overall, our results show that both saturated and unsaturated 3α-ols are less miscible than the corresponding 3ß-ols, but that the presence of a Δ(5) double bond can improve the sterol miscibility in the DPPC bilayer at high sterol concentrations.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colestanol/química , Bicamadas Lipídicas/química , Varredura Diferencial de Calorimetria , Isomerismo , Conformação Molecular , Transição de Fase , Temperatura , Termodinâmica
13.
Chem Phys Lipids ; 164(1): 62-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21055394

RESUMO

It is commonly believed that all membrane sterols are rigid all-trans ring systems with a fully extended alkyl side-chain and that they similarly influence phospholipid bilayer physical properties. Here, we report the sterol concentration-dependent, thermotropic phase behaviour of binary dipalmitoylphosphatidylcholine (DPPC)/sterol mixtures containing two similar 5α-H sterols with different functional group orientations (3α-OH or 3ß-OH), which adopt an ideal all-trans planar ring conformation but lack the deformed ring B conformation of cholesterol (Chol) and epicholesterol (Echol), using differential scanning calorimetry (DSC). Our deconvolution of the DSC main phase transition endotherms show differences in the proportions of sterol-poor (sharp) and sterol-rich (broad) domains in the DPPC bilayer with increasing sterol concentration, which delineate gel/liquid-crystalline (P(ß')/L(α)) and disordered gel (L(ß))/liquid-ordered (l(o)) phase regions. There are similarities in the DPPC main phase transition temperature, cooperativity and enthalpy for each 3ß-ol and 3α-ol pair with increasing sterol concentration and differences in the parameters obtained for both the sterol-poor and sterol-rich regions. The sterol-poor domain persists over a greater concentration range in both 3α-ol/DPPC mixtures, suggesting that either those domains are more stable in the 3α-ols or that those sterols are less miscible in the sterol-rich domain. Corresponding parameters for the sterol-rich domain show that at sterol concentrations up to 20mol%, the 5α-H,3ß-ol is more effective at reducing the phase transition enthalpy of the broad component (ΔH(m)(brd)) than Chol, but is less effective at higher concentrations. Although mixtures containing Echol and 5α-cholestan-3α-ol have similar positive slopes below 7mol% sterol, suggesting that they abolish the L(ß)/l(o) phase transition equally effectively at low concentrations, Echol is more effective than the saturated 3α-ol at higher sterol concentrations. A comparison of ΔH(m)(brd) obtained for the saturated and unsaturated pairs suggests that the latter sterols stabilize the l(o) phase and broaden and abolish the DPPC main phase transition more effectively than the saturated sterols at physiologically relevant concentrations, supporting the idea that the double bond of Chol and Echol promotes greater sterol miscibility and the formation of l(o) phase lipid bilayers relative to corresponding saturated sterols in biological membranes.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colestanol/química , Bicamadas Lipídicas/química , Transição de Fase , Varredura Diferencial de Calorimetria , Isomerismo , Conformação Molecular , Temperatura , Termodinâmica
14.
Chem Phys Lipids ; 163(6): 403-48, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20371224

RESUMO

This review deals with the effect of variations in phospholipid and sterol structure on the nature and magnitude of lipid-sterol interactions in lipid bilayer model membranes. The first portion of the review covers the effect of Chol itself on the thermotropic phase behavior and organization of a variety of different glycero- and sphingolipid membrane lipid classes, varying in the structure and charge of their polar headgroups and in the length and structure of their fatty acyl chains. The second part of this review deals with the effect of variations in sterol structure on the thermotropic phase behavior and organization primarily of the well studied DPPC model membrane system. In the third section, we focus on some of the contributions of sterol functional group chemistry, molecular conformation and dynamics, to sterol-lipid interactions. Using those studies, we re-examine the results of recently published experimental and computer-modeling studies to provide a new more dynamic molecular interpretation of sterol-lipid interactions. We suggest that the established view of the rigid sterol ring system and extended alkyl side-chain obtained from physical studies of cholesterol-phospholipid mixtures may not apply in lipid mixtures differing in their sterol chemical structure.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Esteróis/química , Glicolipídeos/química , Modelos Moleculares
15.
Biophys J ; 91(9): 3327-40, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16905603

RESUMO

We carried out comparative DSC and Fourier transform infrared spectroscopic studies of the effects of cholesterol and lanosterol on the thermotropic phase behavior and organization of DPPC bilayers. Lanosterol is the biosynthetic precursor of cholesterol and differs in having three rather than two axial methyl groups projecting from the beta-face of the planar steroid ring system and one axial methyl group projecting from the alpha-face, whereas cholesterol has none. Our DSC studies indicate that the incorporation of lanosterol is more effective than cholesterol is in reducing the enthalpy of the pretransition. Lanosterol is also initially more effective than cholesterol in reducing the enthalpies of both the sharp and broad components of the main phase transition. However, at sterol concentrations of 50 mol %, lanosterol does not abolish the cooperative hydrocarbon chain-melting phase transition as does cholesterol. Moreover, at higher lanosterol concentrations ( approximately 30-50 mol %), both sharp and broad low-temperature endotherms appear in the DSC heating scans, suggestive of the formation of lanosterol crystallites, and of the lateral phase separation of lanosterol-enriched phospholipid domains, respectively, at low temperatures, whereas such behavior is not observed with cholesterol at comparable concentrations. Our Fourier transform infrared spectroscopic studies demonstrate that lanosterol incorporation produces a less tightly packed bilayer than does cholesterol, which is characterized by increased hydration in the glycerol backbone region of the DPPC bilayer. These and other results indicate that lanosterol is less miscible in DPPC bilayers than is cholesterol, but perturbs their organization to a greater extent, probably due primarily to the rougher faces and larger cross-sectional area of the lanosterol molecule and perhaps secondarily to its decreased ability to form hydrogen bonds with adjacent DPPC molecules. Nevertheless, lanosterol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers, although this phase is not as tightly packed as comparable cholesterol/DPPC mixtures.


Assuntos
Colesterol/química , Lanosterol/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Fosfolipídeos/química , Varredura Diferencial de Calorimetria/métodos , Transição de Fase , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura
16.
Biophys J ; 84(2 Pt 1): 1038-46, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12547785

RESUMO

Phospholipids, sphingolipids, and sterols are the major lipid components of the plasma membranes of eukaryotic cells. Because these three lipid classes occur naturally as enantiomerically pure compounds, enantiospecific lipid-lipid and lipid-sterol interactions could in principle occur in the lipid bilayers of eukaryotic plasma membranes. Although previous biophysical studies of phospholipid and phospholipid-sterol model membrane systems have consistently failed to observe such enantiomerically selective interactions, a recent monolayer study of the interactions of natural and enantiomeric cholesterol with egg sphingomyelin has apparently revealed the existence of enantiospecific sterol-sphingolipid interactions. To determine whether enantiospecific sterol-sphingolipid interactions also occur in more biologically relevant lipid-bilayer systems, differential scanning calorimetric, x-ray diffraction, and neutral buoyant-density measurements were utilized to study the effects of natural and enantiomeric cholesterol on the thermotropic phase behavior and structure of egg sphingomyelin bilayers. The calorimetry experiments show that the natural and enantiomeric cholesterol have essentially identical effects on the temperature, enthalpy, and cooperativity of the gel/liquid-crystalline phase transition of egg sphingomyelin bilayers within the limits of experimental error. As well, the x-ray diffraction and neutral buoyancy experiments indicate that bilayers formed from mixtures of natural or enantiomeric cholesterol and egg sphingomyelin have, within experimental uncertainty, the same structure and mass density. We thus conclude that significant enantioselective cholesterol-sphingolipid interactions do not occur in this lipid-bilayer model membrane system.


Assuntos
Colesterol/análogos & derivados , Colesterol/química , Gema de Ovo/química , Bicamadas Lipídicas/química , Esfingomielinas/química , Varredura Diferencial de Calorimetria/métodos , Densitometria/métodos , Temperatura Alta , Isomerismo , Temperatura , Difração de Raios X/métodos
17.
Biochemistry ; 42(5): 1309-17, 2003 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-12564934

RESUMO

We have studied the biosynthetic regulation of the membrane lipid polar headgroup distribution in Acholeplasma laidlawii B cells made fatty acid auxotrophic by growth in the presence of the biotin-binding agent avidin to test whether this organism has the ability to coherently regulate the lamellar/nonlamellar phase propensity of its membrane lipids. The addition of various single normal growth-supporting exogenous fatty acids to such cell cultures produces fatty acid-homogeneous cells in which the hydrocarbon chain length and structure of the fatty acyl chains of the membrane lipids can be independently varied. Moreover, in analyzing our results, we consider the fact that the individual membrane lipid classes of this organism can form either normal micellar, lamellar, or reversed cubic or hexagonal phases in isolation (Lewis, R. N. A. H., and McElhaney, R. N. (1995) Biochemistry 34, 13818-13824). When A. laidlawii cells are highly enriched in one of a homologous series of methyl isobranched, methyl anteisobranched, or omega-cyclohexyl fatty acids, neither the ratio of normal micellar/lamellar nor of inverted cubic or hexagonal/lamellar phase-forming lipids are coherently regulated, and in fact in the former case, the changes in lipid polar headgroup composition observed are generally in a direction opposite to that required to maintain the overall lamellar/nonlamellar phase preference of the total membrane lipids constant when hydrocarbon chain length is varied. Similarly, when lipid hydrocarbon structure is varied at a constant effective chain length, a similar lack of coherent regulation of membrane lipid polar headgroup distribution is also observed, although in this case a weak overall trend in the expected direction occurs. We also confirm our previous finding (Foht, P. J., Tran, Q. M., Lewis, R. N. A. H., and McElhaney, R. N. (1995) Biochemistry 34, 13811-13817) that the ratio of inverted phase-forming monoglucosyl diacylglycerol to the lamellar phase-forming glycolipid diglucosyl diacylglycerol, previously used to estimate membrane lipid phase preference in A. laidlawii A and B, is not by itself a reliable indicator of the overall lamellar/nonlamellar phase propensity of the total membrane lipids of these organisms. Our results indicate that A. laidlawii B lacks a coherent mechanism to biosynthetically regulate the polar headgroup distribution of its membrane lipids to maintain the micellar/lamellar/inverted phase propensity constant in the face of induced variations in either the chain length or the structure of its lipid hydrocarbon chains. Finally, we suggest that the lack of a coherent regulatory mechanism to regulate the overall phase-forming propensity of the total membrane lipids of this organism under these circumstances may result in part from its inability to optimize all of the biologically relevant physical properties of its membrane lipid bilayer simultaneously.


Assuntos
Acholeplasma laidlawii/química , Ácidos Graxos/química , Lipídeos de Membrana/química , Acholeplasma laidlawii/citologia , Acholeplasma laidlawii/crescimento & desenvolvimento , Avidina/farmacologia , Membrana Celular/química , Meios de Cultura/farmacologia , Glicolipídeos/química , Bicamadas Lipídicas/química , Micelas , Fosfatidilgliceróis/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA