Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 81(22): 4692-4708.e9, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34555355

RESUMO

Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, preclinical and clinical research with PARPi has revealed multiple resistance mechanisms, highlighting the need for identification of novel functional biomarkers and combination treatment strategies. Functional genetic screens performed in cells and organoids that acquired resistance to PARPi by loss of 53BP1 identified loss of LIG3 as an enhancer of PARPi toxicity in BRCA1-deficient cells. Enhancement of PARPi toxicity by LIG3 depletion is dependent on BRCA1 deficiency but independent of the loss of 53BP1 pathway. Mechanistically, we show that LIG3 loss promotes formation of MRE11-mediated post-replicative ssDNA gaps in BRCA1-deficient and BRCA1/53BP1 double-deficient cells exposed to PARPi, leading to an accumulation of chromosomal abnormalities. LIG3 depletion also enhances efficacy of PARPi against BRCA1-deficient mammary tumors in mice, suggesting LIG3 as a potential therapeutic target.


Assuntos
Proteína BRCA1/genética , DNA Ligase Dependente de ATP/genética , DNA de Cadeia Simples , Proteína Homóloga a MRE11/genética , Neoplasias Ovarianas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Animais , Biópsia , Sistemas CRISPR-Cas , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células , Aberrações Cromossômicas , Dano ao DNA , DNA Ligase Dependente de ATP/metabolismo , Feminino , Humanos , Lentivirus/genética , Neoplasias Mamárias Animais , Camundongos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Interferente Pequeno/metabolismo , Transgenes
2.
Nat Cell Biol ; 25(7): 1017-1032, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37414849

RESUMO

Chromatin is dynamically reorganized when DNA replication forks are challenged. However, the process of epigenetic reorganization and its implication for fork stability is poorly understood. Here we discover a checkpoint-regulated cascade of chromatin signalling that activates the histone methyltransferase EHMT2/G9a to catalyse heterochromatin assembly at stressed replication forks. Using biochemical and single molecule chromatin fibre approaches, we show that G9a together with SUV39h1 induces chromatin compaction by accumulating the repressive modifications, H3K9me1/me2/me3, in the vicinity of stressed replication forks. This closed conformation is also favoured by the G9a-dependent exclusion of the H3K9-demethylase JMJD1A/KDM3A, which facilitates heterochromatin disassembly upon fork restart. Untimely heterochromatin disassembly from stressed forks by KDM3A enables PRIMPOL access, triggering single-stranded DNA gap formation and sensitizing cells towards chemotherapeutic drugs. These findings may help in explaining chemotherapy resistance and poor prognosis observed in patients with cancer displaying elevated levels of G9a/H3K9me3.


Assuntos
Heterocromatina , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Heterocromatina/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina , Replicação do DNA , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética
3.
Nat Commun ; 13(1): 6722, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344511

RESUMO

Sister chromatid exchanges (SCEs) are products of joint DNA molecule resolution, and are considered to form through homologous recombination (HR). Indeed, SCE induction upon irradiation requires the canonical HR factors BRCA1, BRCA2 and RAD51. In contrast, replication-blocking agents, including PARP inhibitors, induce SCEs independently of BRCA1, BRCA2 and RAD51. PARP inhibitor-induced SCEs are enriched at difficult-to-replicate genomic regions, including common fragile sites (CFSs). PARP inhibitor-induced replication lesions are transmitted into mitosis, suggesting that SCEs can originate from mitotic processing of under-replicated DNA. Proteomics analysis reveals mitotic recruitment of DNA polymerase theta (POLQ) to synthetic DNA ends. POLQ inactivation results in reduced SCE numbers and severe chromosome fragmentation upon PARP inhibition in HR-deficient cells. Accordingly, analysis of CFSs in cancer genomes reveals frequent allelic deletions, flanked by signatures of POLQ-mediated repair. Combined, we show PARP inhibition generates under-replicated DNA, which is processed into SCEs during mitosis, independently of canonical HR factors.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Troca de Cromátide Irmã , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Sítios Frágeis do Cromossomo , Recombinação Homóloga/genética , DNA
4.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952518

RESUMO

The stalled fork protection pathway mediated by breast cancer 1/2 (BRCA1/2) proteins is critical for replication fork stability. However, it is unclear whether additional mechanisms are required to maintain replication fork stability. We describe a hitherto unknown mechanism, by which the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily-A containing DEAD/H box-1 (SMARCAD1) stabilizes active replication forks, that is essential to maintaining resistance towards replication poisons. We find that SMARCAD1 prevents accumulation of 53BP1-associated nucleosomes to preclude toxic enrichment of 53BP1 at the forks. In the absence of SMARCAD1, 53BP1 mediates untimely dissociation of PCNA via the PCNA-unloader ATAD5, causing frequent fork stalling, inefficient fork restart, and accumulation of single-stranded DNA. Although loss of 53BP1 in SMARCAD1 mutants rescues these defects and restores genome stability, this rescued stabilization also requires BRCA1-mediated fork protection. Notably, fork protection-challenged BRCA1-deficient naïve- or chemoresistant tumors require SMARCAD1-mediated active fork stabilization to maintain unperturbed fork progression and cellular proliferation.

5.
Nat Commun ; 10(1): 3287, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337767

RESUMO

Homologous recombination (HR) and Fanconi Anemia (FA) pathway proteins in addition to their DNA repair functions, limit nuclease-mediated processing of stalled replication forks. However, the mechanism by which replication fork degradation results in genome instability is poorly understood. Here, we identify RIF1, a non-homologous end joining (NHEJ) factor, to be enriched at stalled replication forks. Rif1 knockout cells are proficient for recombination, but displayed degradation of reversed forks, which depends on DNA2 nuclease activity. Notably, RIF1-mediated protection of replication forks is independent of its function in NHEJ, but depends on its interaction with Protein Phosphatase 1. RIF1 deficiency delays fork restart and results in exposure of under-replicated DNA, which is the precursor of subsequent genomic instability. Our data implicate RIF1 to be an essential factor for replication fork protection, and uncover the mechanisms by which unprotected DNA replication forks can lead to genome instability in recombination-proficient conditions.


Assuntos
Replicação do DNA , Instabilidade Genômica , Proteínas de Ligação a Telômeros/fisiologia , Animais , Células Cultivadas , DNA Cruciforme/química , Camundongos , Domínios Proteicos , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA