Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(11): e26787, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023178

RESUMO

Regular cannabis use is associated with cortex-wide changes in spontaneous and oscillatory activity, although the functional significance of such changes remains unclear. We hypothesized that regular cannabis use would suppress spontaneous gamma activity in regions serving cognitive control and scale with task performance. Participants (34 cannabis users, 33 nonusers) underwent an interview regarding their substance use history and completed the Eriksen flanker task during magnetoencephalography (MEG). MEG data were imaged in the time-frequency domain and virtual sensors were extracted from the peak voxels of the grand-averaged oscillatory interference maps to quantify spontaneous gamma activity during the pre-stimulus baseline period. We then assessed group-level differences in spontaneous and oscillatory gamma activity, and their relationship with task performance and cannabis use metrics. Both groups exhibited a significant behavioral flanker interference effect, with slower responses during incongruent relative to congruent trials. Mixed-model ANOVAs indicated significant gamma-frequency neural interference effects in the left frontal eye fields (FEF) and left temporoparietal junction (TPJ). Further, a group-by-condition interaction was detected in the left FEF, with nonusers exhibiting stronger gamma oscillations during incongruent relative to congruent trials and cannabis users showing no difference. In addition, spontaneous gamma activity was sharply suppressed in cannabis users relative to nonusers in the left FEF and TPJ. Finally, spontaneous gamma activity in the left FEF and TPJ was associated with task performance across all participants, and greater cannabis use was associated with weaker spontaneous gamma activity in the left TPJ of the cannabis users. Regular cannabis use was associated with weaker spontaneous gamma in the TPJ and FEF. Further, the degree of use may be proportionally related to the degree of suppression in spontaneous activity in the left TPJ.


Assuntos
Cognição , Ritmo Gama , Magnetoencefalografia , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Ritmo Gama/fisiologia , Cognição/fisiologia , Mapeamento Encefálico , Testes Neuropsicológicos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Uso da Maconha
2.
Brain Behav Immun ; 114: 430-437, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716379

RESUMO

INTRODUCTION: Inflammatory processes help protect the body from potential threats such as bacterial or viral invasions. However, when such inflammatory processes become chronically engaged, synaptic impairments and neuronal cell death may occur. In particular, persistently high levels of C-reactive protein (CRP) and tumor necrosis factor-alpha (TNF-α) have been linked to deficits in cognition and several psychiatric disorders. Higher-order cognitive processes such as fluid intelligence (Gf) are thought to be particularly vulnerable to persistent inflammation. Herein, we investigated the relationship between elevated CRP and TNF-α and the neural oscillatory dynamics serving Gf. METHODS: Seventy adults between the ages of 20-66 years (Mean = 45.17 years, SD = 16.29, 21.4% female) completed an abstract reasoning task that probes Gf during magnetoencephalography (MEG) and provided a blood sample for inflammatory marker analysis. MEG data were imaged in the time-frequency domain, and whole-brain regressions were conducted using each individual's plasma CRP and TNF-α concentrations per oscillatory response, controlling for age, BMI, and education. RESULTS: CRP and TNF-α levels were significantly associated with region-specific neural oscillatory responses. In particular, elevated CRP concentrations were associated with altered gamma activity in the right inferior frontal gyrus and right cerebellum. In contrast, elevated TNF-α levels scaled with alpha/beta oscillations in the left anterior cingulate and left middle temporal, and gamma activity in the left intraparietal sulcus. DISCUSSION: Elevated inflammatory markers such as CRP and TNF-α were associated with aberrant neural oscillations in regions important for Gf. Linking inflammatory markers with regional neural oscillations may hold promise in identifying mechanisms of cognitive and psychiatric disorders.


Assuntos
Encéfalo , Fator de Necrose Tumoral alfa , Adulto , Humanos , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Masculino , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Cognição , Inteligência/fisiologia , Proteína C-Reativa
3.
J Virol ; 95(13): e0000321, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853962

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an important oncogenic virus previously shown to be neurotropic, but studies on neuronal cell infection and pathogenesis are still very limited. Here, we characterized the effects of KSHV infection on neuronal SH-SY5Y cells by the recombinant virus rKSHV.219, which expresses both green fluorescent protein (GFP) and red fluorescent protein (RFP) to reflect the latent and lytic phases of infection. We demonstrated that infected cells have a higher growth rate and that KSHV infection can be sustained. Interestingly, the infected cells can transition spontaneously back and forth between lytic and latent phases of infection, producing progeny viruses but without any adverse effects on cell growth. In addition, transcriptome analysis of viral and cellular genes in latent and lytic cells showed that unlike other infected cell lines, the latently infected cells expressed both latent and most, but not all, of the lytic genes required for infectious virion production. The viral genes uniquely expressed by the lytic cells were mainly involved in the early steps of virus binding. Some of the cellular genes that were deregulated in both latently and lytically infected cells are involved in cell adhesion, cell signal pathways, and tumorigenesis. The downregulated cellular CCDN1, PAX5, and NFASC and upregulated CTGF, BMP4, YAP1, LEF1, and HLA-DRB1 genes were found to be associated with cell adhesion molecules (CAMs), hippo signaling, and cancer. These deregulated genes may be involved in creating an environment that is unique in neuronal cells to sustain cell growth upon KSHV infection and not observed in other infected cell types. IMPORTANCE Our study has provided evidence that neuronal SH-SY5Y cells displayed unique cellular responses upon KSHV infection. Unlike other infected cells, this neuronal cell line displayed a higher growth rate upon infection and can spontaneously transition back and forth between latent and lytic phases of infection. Unlike other latently infected cells, a number of lytic genes were also expressed in the latent phase of infection in addition to the established latent viral genes. They may play a role in deregulating a number of host genes that are involved in cell signaling and tumorigenesis in order to sustain the infection and growth advantages for the cells. Our study has provided novel insights into KSHV infection of neuronal cells and a potential new model for further studies to explore the underlying mechanism in viral and host interactions for neuronal cells and the association of KSHV with neuronal diseases.


Assuntos
Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 8/metabolismo , Neurônios/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia , Animais , Adesão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Chlorocebus aethiops , Células HEK293 , Infecções por Herpesviridae/patologia , Humanos , Infecção Latente/virologia , Neuroblastoma/metabolismo , Neuroblastoma/virologia , Neurônios/virologia , Células Vero , Replicação Viral/fisiologia
4.
J Psychopharmacol ; 38(5): 471-480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38418434

RESUMO

BACKGROUND: Regular cannabis is known to impact higher-order cognitive processes such as attention, but far less is known regarding cognitive flexibility, a component of executive function. Moreover, whether such changes are related to aberrations in the neural oscillatory dynamics serving flexibility remains poorly understood. AIMS: Quantify the neural oscillatory dynamics serving cognitive flexibility by having participants complete a task-switching paradigm during magnetoencephalography (MEG). Probe whole-brain maps to identify alterations in chronic cannabis users relative to nonusers and determine how these alterations relate to the degree of cannabis use involvement. METHODS: In all, 25 chronic cannabis users and 30 demographically matched nonuser controls completed neuropsychological testing, an interview regarding their substance use, a urinalysis, and a task switch paradigm during MEG. Time-frequency windows of interest were identified using a data-driven statistical approach and these were imaged using a beamformer. Whole-brain neural switch cost maps were computed by subtracting the oscillatory maps of the no-switch condition from the switch condition per participant. These were examined for group differences. RESULTS: Cannabis users had weaker theta switch cost responses in the dorsolateral and dorsomedial prefrontal cortices, while nonusers showed the typical pattern of greater recruitment during switch relative to no switch trials. In addition, theta activity in the dorsomedial prefrontal cortex was significantly correlated with cannabis use involvement. CONCLUSIONS: Cannabis users exhibited altered theta switch cost activity compared to nonusers in prefrontal cortical regions, which are critical for cognitive flexibility. This activity scaled with cannabis use involvement, indicating a link between cannabis use and aberrant oscillatory activity underlying cognitive flexibility.


Assuntos
Função Executiva , Magnetoencefalografia , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Função Executiva/fisiologia , Função Executiva/efeitos dos fármacos , Cognição/efeitos dos fármacos , Cognição/fisiologia , Testes Neuropsicológicos , Atenção/efeitos dos fármacos , Atenção/fisiologia , Abuso de Maconha/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Encéfalo/fisiopatologia , Encéfalo/efeitos dos fármacos , Estudos de Casos e Controles
5.
Neurobiol Stress ; 29: 100599, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38213830

RESUMO

Background: Psychosocial distress among youth is a major public health issue characterized by disruptions in cognitive control processing. Using the National Institute of Mental Health's Research Domain Criteria (RDoC) framework, we quantified multidimensional neural oscillatory markers of psychosocial distress serving cognitive control in youth. Methods: The sample consisted of 39 peri-adolescent participants who completed the NIH Toolbox Emotion Battery (NIHTB-EB) and the Eriksen flanker task during magnetoencephalography (MEG). A psychosocial distress index was computed with exploratory factor analysis using assessments from the NIHTB-EB. MEG data were analyzed in the time-frequency domain and peak voxels from oscillatory maps depicting the neural cognitive interference effect were extracted for voxel time series analyses to identify spontaneous and oscillatory aberrations in dynamics serving cognitive control as a function of psychosocial distress. Further, we quantified the relationship between psychosocial distress and dynamic functional connectivity between regions supporting cognitive control. Results: The continuous psychosocial distress index was strongly associated with validated measures of pediatric psychopathology. Theta-band neural cognitive interference was identified in the left dorsolateral prefrontal cortex (dlPFC) and middle cingulate cortex (MCC). Time series analyses of these regions indicated that greater psychosocial distress was associated with elevated spontaneous activity in both the dlPFC and MCC and blunted theta oscillations in the MCC. Finally, we found that stronger phase coherence between the dlPFC and MCC was associated with greater psychosocial distress. Conclusions: Greater psychosocial distress was marked by alterations in spontaneous and oscillatory theta activity serving cognitive control, along with hyperconnectivity between the dlPFC and MCC.

6.
Neuropsychologia ; 173: 108289, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35690117

RESUMO

Brain-computer interfaces for augmentative and alternative communication (BCI-AAC) may help overcome physical barriers to AAC access. Traditionally, visually based P300-BCI-AAC displays utilize a symmetrical grid layout. Contextual scene displays are composed of context-rich images (e.g., photographs) and may support AAC success. However, contextual scene displays contrast starkly with the standard P300-grid approach. Understanding the neurological processes from which BCI-AAC devices function is crucial to human-centered computing for BCI-AAC. Therefore, the aim of this multidisciplinary investigation is to provide an initial exploration of contextual scene use for BCI-AAC. METHODS: Participants completed three experimental conditions to evaluate the effects of item arrangement asymmetry and context on P300-based BCI-AAC signals and offline BCI-AAC accuracy, including 1) the full contextual scene condition, 2) asymmetrical item arraignment without context condition and 3) the grid condition. Following each condition, participants completed task-evaluation ratings (e.g., engagement). Offline BCI-AAC accuracy for each condition was evaluated using cross-validation. RESULTS: Display asymmetry significantly decreased P300 latency in the centro-parietal cluster. P300 amplitudes in the frontal cluster were decreased, though nonsignificantly. Display context significantly increased N170 amplitudes in the occipital cluster, and N400 amplitudes in the centro-parietal and occipital clusters. Scenes were rated as more visually appealing and engaging, and offline BCI-AAC performance for the scene condition was not statistically different from the grid standard. CONCLUSION: Findings support the feasibility of incorporating scene-based displays for P300-BCI-AAC development to help provide communication for individuals with minimal or emerging language and literacy skills.


Assuntos
Interfaces Cérebro-Computador , Adulto , Comunicação , Eletroencefalografia , Potenciais Evocados P300 , Potenciais Evocados , Feminino , Humanos , Masculino
7.
Neurotrauma Rep ; 2(1): 626-638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35018364

RESUMO

Cases of concussions in the United States keep increasing and are now up to 2 million to 3 million incidents per year. Although concussions are recoverable and usually not life-threatening, the degree and rate of recovery may vary depending on age, severity of the injury, and past concussion history. A subsequent concussion before full recovery may lead to more-severe brain damage and poorer outcomes. Electroencephalography (EEG) recordings can identify brain dysfunctionality and abnormalities, such as after a concussion. Routine EEG monitoring can be a convenient method for reducing unreported injuries and preventing long-term damage, especially among groups with a greater risk of experiencing a concussion, such as athletes participating in contact sports. Because of the relative availability of EEG compared to other brain-imaging techniques (e.g., functional magnetic resonance imaging), the use of EEG monitoring is growing for various neurological disorders. In this longitudinal study, EEG was analyzed from 4 football athletes before their athletic season and also within 7 days of concussion. Compared to a control group of 4 additional athletes, a concussion was detected with up to 99.5% accuracy using EEG recordings in the Theta-Alpha band. Classifiers that use data from only a subset of the EEG electrodes providing reliable detection are also proposed. The most effective classifiers used EEG recordings from the Central scalp region in the Beta band and over the Temporal scalp region using the Theta-Alpha band. This proof-of-concept study and preliminary findings suggest that EEG monitoring may be used to identify a sports-related concussion occurrence with a high level of accuracy and thus reduce the chance of unreported concussion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA