Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791566

RESUMO

During the twenty-first century, engineered nanomaterials (ENMs) have attracted rising interest, globally revolutionizing all industrial sectors. The expanding world population and the implementation of new global policies are increasingly pushing society toward a bioeconomy, focused on fostering the adoption of bio-based nanomaterials that are functional, cost-effective, and potentially secure to be implied in different areas, the medical field included. This research was focused on silica nanoparticles (SiO2-NPs) of bio-based and synthetic origin. SiO2-NPs are composed of silicon dioxide, the most abundant compound on Earth. Due to their characteristics and biocompatibility, they are widely used in many applications, including the food industry, synthetic processes, medical diagnosis, and drug delivery. Using zebrafish embryos as in vivo models, we evaluated the effects of amorphous silica bio-based NPs from rice husk (SiO2-RHSK NPs) compared to commercial hydrophilic fumed silica NPs (SiO2-Aerosil200). We evaluated the outcomes of embryo exposure to both nanoparticles (NPs) at the histochemical and molecular levels to assess their safety profile, including developmental toxicity, neurotoxicity, and pro-inflammatory potential. The results showed differences between the two silica NPs, highlighting that bio-based SiO2-RHSK NPs do not significantly affect neutrophils, macrophages, or other innate immune system cells.


Assuntos
Materiais Biocompatíveis , Embrião não Mamífero , Nanopartículas , Dióxido de Silício , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Dióxido de Silício/química , Nanopartículas/química , Embrião não Mamífero/efeitos dos fármacos , Materiais Biocompatíveis/química , Desenvolvimento Embrionário/efeitos dos fármacos , Teste de Materiais
2.
J Neurosci Res ; 101(8): 1345-1359, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031448

RESUMO

Classical dynamins (DNMs) are GTPase proteins engaged in endocytosis, a fundamental process for cargo internalization from the plasma membrane. In mammals, three DNM genes are present with different expression patterns. DNM1 is expressed at high levels in neurons, where it takes place in the recycling of synaptic vesicles; DNM2 is ubiquitously expressed, while DNM3 is found in the brain and in the testis. Due to the conservation of genes in comparison to mammals, we took advantage of a zebrafish model for functional characterization of dnm1a, ortholog of mammalian DNM1. Our data strongly demonstrated that dnm1a has a nervous tissue-specific expression pattern and plays a role in the formation of both axon and synapse. This is the first in vivo study that collects evidence about the effects of dnm1a loss of function in zebrafish, thus providing a new excellent model to be used in different scientific fields.


Assuntos
Tecido Nervoso , Peixe-Zebra , Animais , Masculino , Axônios , Neurônios/metabolismo , Sinapses/metabolismo , Mamíferos
3.
Part Fibre Toxicol ; 20(1): 1, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604752

RESUMO

BACKGROUND: Adverse outcome pathways (AOPs) are conceptual frameworks that organize knowledge about biological interactions and toxicity mechanisms. They present a sequence of events commencing with initial interaction(s) of a stressor, which defines the perturbation in a biological system (molecular initiating event, MIE), and a dependent series of key events (KEs), ending with an adverse outcome (AO). AOPs have recently become the subject of intense studies in a view to better understand the mechanisms of nanomaterial (NM) toxicity. Silver nanoparticles (Ag NPs) are one of the most explored nanostructures and are extensively used in various application. This, in turn, has increased the potential for interactions of Ag NPs with environments, and toxicity to human health. The aim of this study was to construct a putative AOPs (pAOP) related to reproductive toxicity of Ag NPs, in order to lay the groundwork for a better comprehension of mechanisms affecting both undesired toxicity (against human cell) and expected toxicity (against microorganisms). METHODS: PubMed and Scopus were systematically searched for peer-reviewed studies examining reproductive toxicity potential of Ag NPs. The quality of selected studies was assessed through ToxRTool. Eventually, forty-eight studies published between 2005 and 2022 were selected to identify the mechanisms of Ag NPs impact on reproductive function in human male. The biological endpoints, measurements, and results were extracted from these studies. Where possible, endpoints were assigned to a potential KE and an AO using expert judgment. Then, KEs were classified at each major level of biological organization. RESULTS: We identified the impairment of intracellular SH-containing biomolecules, which are major cellular antioxidants, as a putative MIE, with subsequent KEs defined as ROS accumulation, mitochondrial damage, DNA damage and lipid peroxidation, apoptosis, reduced production of reproductive hormones and reduced quality of sperm. These successive KEs may result in impaired male fertility (AO). CONCLUSION: This research recapitulates and schematically represents complex literature data gathered from different biological levels and propose a pAOP related to the reproductive toxicity induced by AgNPs. The development of AOPs specific to NMs should be encouraged in order to provide new insights to gain a better understanding of NP toxicity.


Assuntos
Rotas de Resultados Adversos , Nanopartículas Metálicas , Animais , Masculino , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Prata/toxicidade , Prata/química , Sêmen , Genitália Masculina , Mamíferos
4.
Pediatr Allergy Immunol ; 33 Suppl 27: 38-40, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35080317

RESUMO

Airborne particulate (PM) components from fossil fuel combustion can induce oxidative stress initiated by reactive oxygen species (ROS) that are strongly correlated with airway inflammation and asthma. A valid biomarker of airway inflammation is fractionated exhaled nitric oxide (FENO). The oxidative potential of PM2.5 can be evaluated with the dithiothreitol (DTT) dosage, which represents both ROS chemically produced and intracellular ROS of macrophages. This correlates with quality indicators of the internal environment and ventilation strategies such as dilution and removal of airborne contaminants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Expiração , Humanos , Estresse Oxidativo , Material Particulado/toxicidade
5.
J Appl Toxicol ; 42(12): 2030-2044, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35929361

RESUMO

Microplastics (MPs) represent a worldwide emerging relevant concern toward human and environmental health due to their intentional or unintentional release. Human exposure to MPs by inhalation is predicted to be among the most hazardous. MPs include both engineered, or primary MPs, and secondary MPs, materials obtained by fragmentation from any plastic good. The major part of the environmental MPs is constituted by the second ones that are irregular in size, shape and composition. These features make the study of the biological impact of heterogenous MPs of extremely high relevance to better estimate the real toxicological hazards of these materials on human and environmental organisms. The smallest fractions of plastic granules, relying on the micron-sized scale, can be considered as the most abundant component of the environmental MPs, and for this reason, they are typically used to perform toxicity tests using in vitro systems representative of an inhalation exposure scenario. In the present work, MPs obtained from industrial treatment of waste plastics (wMPs < 50 µm) were investigated, and after the physico-chemical characterization, the cytotoxic, inflammatory and genotoxic responses, as well as the modality of wMPs interactions with alveolar lung cells, were determined. Obtained results indicated that, at high concentrations (100 µg/ml) and prolonged exposure time (48 h), wMPs affect biological responses by inducing inflammation and genotoxicity, as a result of the cell-wMP interactions, also including the uptake of the smaller particles.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Plásticos/toxicidade , Células A549 , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Pulmão , Monitoramento Ambiental
6.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886883

RESUMO

Multidrug antimicrobial resistance is a constantly growing health care issue associated with increased mortality and morbidity, and huge financial burden. Bacteria frequently form biofilm communities responsible for numerous persistent infections resistant to conventional antibiotics. Herein, novel nanoparticles (NPs) loaded with the natural bactericide farnesol (FSL NPs) are generated using high-intensity ultrasound. The nanoformulation of farnesol improved its antibacterial properties and demonstrated complete eradication of Staphylococcus aureus within less than 3 h, without inducing resistance development, and was able to 100% inhibit the establishment of a drug-resistant S. aureus biofilm. These antibiotic-free nano-antimicrobials also reduced the mature biofilm at a very low concentration of the active agent. In addition to the outstanding antibacterial properties, the engineered nano-entities demonstrated strong antiviral properties and inhibited the spike proteins of SARS-CoV-2 by up to 83%. The novel FSL NPs did not cause skin tissue irritation and did not induce the secretion of anti-inflammatory cytokines in a 3D skin tissue model. These results support the potential of these bio-based nano-actives to replace the existing antibiotics and they may be used for the development of topical pharmaceutic products for controlling microbial skin infections, without inducing resistance development.


Assuntos
COVID-19 , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antivirais/farmacologia , Biofilmes , Resistência a Múltiplos Medicamentos , Farneseno Álcool/farmacologia , Humanos , Testes de Sensibilidade Microbiana , SARS-CoV-2 , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
7.
Arch Toxicol ; 95(4): 1379-1390, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481051

RESUMO

Combustion-derived particles (CDPs), due to the presence in their composition of several toxic and carcinogenic chemical compounds, such as polycyclic aromatic hydrocarbons (PAHs) and metals, are linked to several respiratory diseases, including lung cancer. Epithelial-to-mesenchymal transition (EMT) is a crucial step in lung cancer progression, involving several morphological and phenotypical changes. The study aims to investigate how exposure to CDPs from different biomass sources might be involved in cancer development, focusing mainly on the effects linked to EMT and invasion on human A549 lung cells. Biomass combustion-derived particles (BCDPs) were collected from a stove fuelled with pellet, charcoal or wood, respectively. A time course and dose response evaluation on cell viability and pro-inflammatory response was performed to select the optimal conditions for EMT-related studies. A significant release of IL-8 was found after 72 h of exposure to 2.5 µg/cm2 BCDPs. The EMT activation was then examined by evaluating the expression of some typical markers, such as E-cadherin and N-cadherin, and the possible enhanced migration and invasiveness. Sub-acute exposure revealed that BCDPs differentially modulated cell viability, migration and invasion, as well as the expression of proteins linked to EMT. Results showed a reduction in the epithelial marker E-cadherin and a parallel increase in the mesenchymal markers N-cadherin, mainly after exposure to charcoal and wood. Migration and invasion were also increased. In conclusion, our results suggest that BCDPs with a higher content of organic compounds (e.g. PAHs) in their chemical composition might play a crucial role in inducing pro-carcinogenic effects on epithelial cells.


Assuntos
Biomassa , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Células A549 , Antígenos CD/metabolismo , Caderinas/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Pulmão/citologia
8.
J Appl Toxicol ; 41(2): 291-302, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33107989

RESUMO

The use of CuO nanoparticles (NPs) has increased greatly and their potential effects on human health need to be investigated. Differentiated Caco-2 cells were treated from the apical (Ap) and the basolateral (Bl) compartment with different concentrations (0, 10, 50 and 100 µg/mL) of commercial or sonochemically synthesized (sono) CuO NPs. Sono NPs were prepared in ethanol (CuOe) or in water (CuOw), obtaining CuO NPs differing in size and shape. The effects on the Caco-2 cell barrier were assessed via transepithelial electrical resistance (TEER) evaluation just before and after 1, 2 and 24 hours of exposure and through the analysis of cytokine release and biomarkers of oxidative damage to proteins after 24 hours. Sono CuOe and CuOw NPs induced a TEER decrease with a dose-dependent pattern after Bl exposure. Conversely, TEER values were not affected by the Ap exposure to commercial CuO NPs and, concerning the Bl exposure, only the lowest concentration tested (10 µg/mL) caused a TEER decrease after 24 hours of exposure. An increased release of interleukin-8 was induced by sono CuO NPs after the Ap exposure to 100 µg/mL and by sono and commercial CuO after the Bl exposure to all the concentrations. No effects of commercial and sono CuO NPs on interleukin-6 (with the only exception of 100 µg/mL Bl commercial CuO) and tumor necrosis factor-α release were observed. Ap treatment with commercial and CuOw NPs was able to induce significant alterations on specific biomarkers of protein oxidative damage (protein sulfhydryl group oxidation and protein carbonylation).


Assuntos
Células CACO-2/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/crescimento & desenvolvimento , Nanopartículas Metálicas/toxicidade , Humanos
9.
Ecotoxicol Environ Saf ; 225: 112775, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536794

RESUMO

Microplastic pollution represents a global problem with negative impacts on aquatic environment and organisms' health. To date, most of the laboratory toxicological studies on microplastics (MPs) have made use of single commercial micro and nano-polymers, which do not reflect the heterogeneity of environmental MPs. To improve the relevance of the hazard assessment, micrometer-sized plastic particles of miscellaneous non-reusable waste plastics, with size <100 µm and <50 µm (waste microplastics, wMPs), were characterized by microscopic and spectroscopic techniques and tested on developing zebrafish and Xenopus laevis by FET and FETAX assays respectively. Moreover, the modalities of wMP interaction with the embryonic structures, as well as the histological lesions, were explored by light and electron microscopy. We have shown that wMPs had very heterogeneous shapes and sizes, were mainly composed of polyethylene and polypropylene and contained metal and organic impurities, as well as submicrometric particle fractions, features that resemble those of environmental occurring MPs. wMPs (0.1-100 mg/L) caused low rate of mortality and altered phenotypes in embryos, but established species-specific biointeractions. In zebrafish, wMPs by adhering to chorion were able to delay hatching in a size and concentration dependent manner. In Xenopus embryos, which open stomodeum earlier than zebrafish, wMPs were accumulated in intestinal tract, where produced mechanical stress and stimulated mucus overproduction, attesting an irritation response. Although wMP biointeractions did not interfere with morphogenesis processes, further studies are needed to understand the underlying mechanisms and long-term impact of these, or even smaller, wMPs.


Assuntos
Microplásticos , Plásticos , Anfíbios , Animais , Plásticos/toxicidade , Polietileno , Peixe-Zebra
10.
Pediatr Allergy Immunol ; 31 Suppl 26: 26-28, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33236436

RESUMO

Respiratory allergies are known to affect people all over the world. Environmental factors related to pollution play a significant etiopathogenic role in this regard. Polluting sources are industrial activities and urban traffic, capable of generating various types of pollutants that trigger inflammatory, direct, and indirect damage to tissues, promoting allergic symptoms, even serious ones, and interfering with the pharmacologic response. They are also able to modify pollen, promoting allergic sensitization. Pollution could have played a significant predisposing role in the ongoing morbidity and mortality of SARS-CoV-2.


Assuntos
Poluição do Ar/efeitos adversos , COVID-19/epidemiologia , Hipersensibilidade Respiratória/etiologia , SARS-CoV-2 , Criança , Humanos , Dióxido de Nitrogênio/efeitos adversos , Ozônio/efeitos adversos , Material Particulado/efeitos adversos
11.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260164

RESUMO

Air pollution is one of the world's leading environmental causes of death. The epidemiological relationship between outdoor air pollution and the onset of health diseases associated with death is now well established. Relevant toxicological proofs are now dissecting the molecular processes that cause inflammation, reactive species generation, and DNA damage. In addition, new data are pointing out the role of airborne particulates in the modulation of genes and microRNAs potentially involved in the onset of human diseases. In the present review we collect the relevant findings on airborne particulates of one of the biggest hot spots of air pollution in Europe (i.e., the Po Valley), in the largest urban area of this region, Milan. The different aerodynamic fractions are discussed separately with a specific focus on fine and ultrafine particles that are now the main focus of several studies. Results are compared with more recent international findings. Possible future perspectives of research are proposed to create a new discussion among scientists working on the toxicological effects of airborne particles.


Assuntos
Poluentes Atmosféricos/toxicidade , Inflamação/epidemiologia , Material Particulado/toxicidade , Dano ao DNA , Monitoramento Ambiental , Humanos , Técnicas In Vitro , Inflamação/induzido quimicamente , Itália , Estresse Oxidativo , Tamanho da Partícula
12.
J Appl Toxicol ; 39(8): 1155-1163, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31017309

RESUMO

ZnO nanoparticles (NPs) are widely used nowadays, thus the gastrointestinal exposure to ZnO NPs is likely to be relevant and the effects on the intestinal barrier should be investigated. Polarized Caco-2 cells were exposed from the apical (Ap) and basolateral (Bl) compartments to increasing concentrations (0, 10, 50 and 100 µg/mL) of sonochemical (sono) and commercial ZnO NPs. The transepithelial electrical resistance (TEER), cell viability, proinflammatory cytokine release and presence of protein oxidative damage were evaluated after exposure. TEER was not significantly affected by Ap exposure to either sono or commercial ZnO NPs at any tested concentrations. After Bl exposure to sono ZnO NPs (all the concentrations) and to 100 µg/mL of commercial ZnO NPs TEER was decreased (P < 0.05). Ap and Bl exposure to 100 µg/mL sono ZnO NPs and Ap exposure to 50 µg/mL commercial ZnO NPs induced a significant (P < 0.05) release of interleukin-6. A significant (P < 0.05) release of interleukin-8 was observed after Ap exposure to ZnO NPs at 100 µg/mL and after Bl exposure to sono ZnO NPs at 100 µg/mL. Ap or Bl exposure to sono or commercial ZnO NPs did not affect tumour necrosis factor-alpha secretion or protein sulphydryl oxidation. In conclusion, the ZnO NP exposure from the Ap compartment appeared almost safe, while the exposure through the basal compartment appeared to be more hazardous and the different NP size and crystallinity seem to affect the mode of action, but further studies are necessary to elucidate better these toxicity mechanisms.


Assuntos
Citocinas/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Nanopartículas/toxicidade , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Óxido de Zinco/toxicidade , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Impedância Elétrica , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Tamanho da Partícula , Propriedades de Superfície , Fator de Necrose Tumoral alfa/metabolismo
13.
Int J Mol Sci ; 20(20)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600872

RESUMO

Greater Cairo (Egypt) is a megalopolis where the studies of the air pollution events are of extremely high relevance, for the geographical-climatological aspects, the anthropogenic emissions and the health impact. While preliminary studies on the particulate matter (PM) chemical composition in Greater Cairo have been performed, no data are yet available on the PM's toxicity. In this work, the in vitro toxicity of the fine PM (PM2.5) sampled in an urban area of Greater Cairo during 2017-2018 was studied. The PM2.5 samples collected during spring, summer, autumn and winter were preliminary characterized to determine the concentrations of ionic species, elements and organic PM (Polycyclic Aromatic Hydrocarbons, PAHs). After particle extraction from filters, the cytotoxic and pro-inflammatory effects were evaluated in human lung A549 cells. The results showed that particles collected during the colder seasons mainly induced the xenobiotic metabolizing system and the consequent antioxidant and pro-inflammatory cytokine release responses. Biological events positively correlated to PAHs and metals representative of a combustion-derived pollution. PM2.5 from the warmer seasons displayed a direct effect on cell cycle progression, suggesting possible genotoxic effects. In conclusion, a correlation between the biological effects and PM2.5 physico-chemical properties in the area of study might be useful for planning future strategies aiming to improve air quality and lower health hazards.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , Biomarcadores , Ciclo Celular , Sobrevivência Celular , Clima , Egito , Humanos , Mediadores da Inflamação , Estresse Oxidativo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo
14.
Arch Toxicol ; 92(9): 2923-2933, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29987410

RESUMO

Exposure to particulate matter (PM) has been related to the onset of adverse health effects including lung cancer, but the underlying molecular mechanisms are still under investigation. Epithelial-to-mesenchymal transition (EMT) is regarded as a crucial step in cancer progression. In a previous study, we reported EMT-related responses in the human bronchial epithelial cell line HBEC3-KT, exposed to Milan airborne winter PM2.5. We also found a strong modulation of SERPINB2, encoding for the PAI-2 protein and previously suggested to play an important role in cancer. Here we investigate the role of SERPINB2/PAI-2 in the regulation of EMT-related effects induced by PM exposure in HBEC3-KT. PM exposure (up to 10 µg/cm2) increased SERPINB2 expression, reduced cell migration and induced morphological alterations in HBEC3-KT. Changes in actin structure and cadherin-1 relocalization were observed in PM-exposed samples. Knockdown of SERPINB2 by siRNA down-regulated the CDH1 gene expression, as well as PAI-2 and cadherin-1 protein expression. SERPINB2 knockdown also increased cell migration rate, and counteracted the PM-induced reduction of cell migration and alteration of cell morphology. SERPINB2 was found to be greatly down-regulated in a HBEC2-KT transformed cell line, supporting the importance of this gene in the regulation of EMT. In conclusion, here we show that PAI-2 regulates CDH1 gene/cadherin-1 protein expression in bronchial HBEC3-KT cells, and this mechanism might be involved in the regulation of cell migration. SERPINB2 down-regulation should be considered part of EMT, and the over-expression of SERPINB2 in PM-exposed samples might be interpreted as an initial protective mechanism.


Assuntos
Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Material Particulado/toxicidade , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Antígenos CD/genética , Caderinas/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Inibidor 2 de Ativador de Plasminogênio/genética , Vimentina/genética
15.
Int J Mol Sci ; 19(3)2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29495342

RESUMO

Hazard identification is the key step in risk assessment and management of manufactured nanomaterials (NM). However, the rapid commercialisation of nano-enabled products continues to out-pace the development of a prudent risk management mechanism that is widely accepted by the scientific community and enforced by regulators. However, a growing body of academic literature is developing promising quantitative methods. Two approaches have gained significant currency. Bayesian networks (BN) are a probabilistic, machine learning approach while the weight of evidence (WoE) statistical framework is based on expert elicitation. This comparative study investigates the efficacy of quantitative WoE and Bayesian methodologies in ranking the potential hazard of metal and metal-oxide NMs-TiO2, Ag, and ZnO. This research finds that hazard ranking is consistent for both risk assessment approaches. The BN and WoE models both utilize physico-chemical, toxicological, and study type data to infer the hazard potential. The BN exhibits more stability when the models are perturbed with new data. The BN has the significant advantage of self-learning with new data; however, this assumes all input data is equally valid. This research finds that a combination of WoE that would rank input data along with the BN is the optimal hazard assessment framework.


Assuntos
Substâncias Perigosas/análise , Substâncias Perigosas/química , Nanoestruturas/química , Medição de Risco/métodos , Algoritmos , Teorema de Bayes , Fenômenos Químicos , Modelos Teóricos , Método de Monte Carlo , Reprodutibilidade dos Testes , Gestão de Riscos/métodos
16.
Environ Sci Technol ; 51(16): 9305-9317, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28715175

RESUMO

Nano metal oxides have been proposed as alternatives to silver (Ag) nanoparticles (NPs) for antibacterial coatings. Here, cotton and polyester-cotton fabrics were sonochemically coated with zinc oxide (ZnO) and copper oxide (CuO) NPs. By varying the reaction solvent (water or ethanol), NPs with different sizes and shapes were synthesized. The cytotoxic and pro-inflammatory effects of studied NPs were investigated in vitro in human alveolar epithelial A549 and macrophage-like THP1 cells. To understand the potential respiratory impact of the NPs, the coated textiles were subjected to the abrasion tests, and the released airborne particles were measured. A very small amount of the studied metal oxides NPs was released from abrasion of the textiles coated by the ethanol-based sonochemical process. The release from the water-based coating was comparably higher. Lung and immune cells viability decreased after 24 h of exposure only at the highest studied NPs concentration (100 µg/mL). Different from the ZnO NPs, both formulations of CuO NPs induced IL-8 release in the lung epithelial cells already at subtoxic concentrations (1-10 µg/mL) but not in immune cells. All of the studied NPs did not induce IL-6 release by the lung and immune cells. Calculations revealed that the exposures of the NPs to human lung due to the abrasion of the textiles were lower or comparable to the minimum doses in the cell viability tests (0.1 µg/mL), at which acute cytotoxicity was not observed. The results alleviate the concerns regarding the potential risk of these metal oxide NPs in their applications for the textile coating and provide insight for the safe-by-design approach.


Assuntos
Cobre/toxicidade , Têxteis , Óxido de Zinco/toxicidade , Células Epiteliais Alveolares , Humanos , Macrófagos , Nanopartículas Metálicas , Óxidos , Prata
17.
Environ Int ; 183: 108420, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38199131

RESUMO

The production and use of nanomaterials (NMs) has increased over the last decades posing relevant questions on their risk after release and exposure of the population or sub-populations. In this context, the safe and sustainable by design (SSbD) approach framework requires to assess the potential hazard connected with intrinsic properties of the material along the whole life cycle of the NM and/or of the nano enabled products. Moreover, in the last years, the use of new advanced methodologies (NAMs) has increasingly gained attention for the use of alternative methods in obtaining relevant information on NMs hazard and risk. Considering the SSbD and the NAMs frameworks, within the ASINA H2020 project, we developed new NAMs devoted at improving the hazard and risk definition of different Ag and TiO2 NPs. The NAMs are developed considering two air liquid interface exposure systems, the Vitrocell Cloud-α and the Cultex Compact module and the relevant steps to obtain reproducible exposures are described. The new NAMs build on the integration of environmental monitoring campaigns at nano-coating production sites, allowing the quantification by the multiple-path particle dosimetry (MPPD) model of the expected lung deposited dose in occupational settings. Starting from this information, laboratory exposures to the aerosolized NPs are performed by using air liquid interface exposure equipment and human alveolar cells (epithelial cells and macrophages), replicating the doses of exposure estimated in workers by MPPD. Preliminary results on cell viability and inflammatory responses are reported. The proposed NAMs may represent possible future reference procedures for assessing the NPs inhalation toxicology, supporting risk assessment at real exposure doses.


Assuntos
Exposição por Inalação , Nanoestruturas , Humanos , Exposição por Inalação/análise , Pulmão , Células Epiteliais , Medição de Risco
18.
Environ Toxicol Pharmacol ; 106: 104353, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163529

RESUMO

A substantial increase in engineered nanoparticles in consumer products has been observed, heightening human and environmental exposure. Inhalation represents the primary route of human exposure, necessitating a focus on lung toxicity studies. However, to avoid ethical concerns the use of in vitro models is an efficient alternative to in vivo models. This study utilized an in vitro human alveolar barrier model at air-liquid-interface with four cell lines, for evaluating the biological effects of different gold nanoparticles. Exposure to PEGylated gold nanospheres, nanorods, and nanostars did not significantly impact viability after 24 h, yet all AuNPs induced cytotoxicity in the form of membrane integrity impairment. Gold quantification revealed cellular uptake and transport. Transcriptomic analysis identified gene expression changes, particularly related to the enhancement of immune cells. Despite limited impact, distinct effects were observed, emphasizing the influence of nanoparticles physicochemical parameters while demonstrating the model's efficacy in investigating particle biological effects.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Ouro/toxicidade , Ouro/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Linhagem Celular
19.
ACS Appl Bio Mater ; 7(2): 990-998, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226433

RESUMO

Catheter-associated urinary tract infections (CAUTI) are among the most common bacterial infections associated with prolonged hospitalization and increased healthcare expenditures. Despite recent advances in the prevention and treatment of these infections, there are still many challenges remaining, among them the creation of a durable catheter coating, which prevents bacterial biofilm formation. The current work reports on a method of protecting medical tubing endowed with antibiofilm properties. Silicone catheters coated sonochemically with ZnO nanoparticles (NPs) demonstrated excellent antibiofilm effects. Toward approval by the European Medicines Agency, it was realized that the ZnO coating would not withstand the regulatory requirements of avoiding dissolution for 14 days in artificial urine examination. Namely, after exposure to urine for 14 days, the coating amount was reduced by 90%. Additional coatings with either carbon or silica maintained antibiofilm activity against Staphylococcus aureus while resisting dissolution in artificial urine for 14 days (C- or SiO2-protected catheters exhibited only 29% reduction). HR-SEM images of the protected catheters indicate the presence of the ZnO coating as well as the protective layer. Antibiofilm activity of all catheters was evaluated both before and after exposure to artificial urine. It was shown that before artificial urine exposure, all coated catheters showed high antibiofilm properties compared to the uncoated control. Exposure of ZnO-coated catheters, without the protective layer, to artificial urine had a significant effect exhibited by the decrease in antibiofilm activity by almost 2 orders of magnitude, compared to unexposed catheters. Toxicity studies performed using a reconstructed human epidermis demonstrated the safety of the improved coating. Exposure of the epidermis to ZnO catheter extracts in artificial urine affects tissue viability compared with control samples, which was not observed in the case of ZnO NPs coating with SiO2 or C. We suggest that silica and carbon coatings confer some protection against zinc ions release, improving ZnO coating safety.


Assuntos
Aparelho Sanitário , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Dióxido de Silício/farmacologia , Biofilmes , Antibacterianos/farmacologia , Catéteres , Carbono
20.
Toxics ; 11(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37755782

RESUMO

Air is an essential natural resource for life [...].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA