RESUMO
Bacterial volatile compounds (BVCs) facilitate interspecies communication in socio-microbiology across physical barriers, thereby influencing interactions between diverse species. The impact of BVCs emitted from Pseudomonas on the biofilm formation characteristics of Listeria monocytogenes within the same ecological niche has been scarcely investigated under practical conditions of food processing. The objective of this study was to explore the motility and biofilm formation characteristics of L. monocytogenes under the impact of Pseudomonas BVCs. It was revealed that BVCs of P. fluorescens, P. lundensis, and P. fragi significantly promoted swimming motility of L. monocytogenes (P < 0.05). As evidenced by crystal violet staining, the L. monocytogenes biofilms reached a maximum OD570 value of approximately 3.78 at 4 d, which was 0.65 units markedly higher than that of the control group (P < 0.05). Despite a decrease in adherent cells of L. monocytogenes biofilms among the BVCs groups, there was a remarkable increase in the abundance of extracellular polysaccharides and proteins with 3.58 and 4.90 µg/cm2, respectively (P < 0.05), contributing to more compact matrix architectures, which suggested that the BVCs of P. fluorescens enhanced L. monocytogenes biofilm formation through promoting the secretion of extracellular polymers. Moreover, the prominent up-regulated expression of virulence genes further revealed the positive regulation of L. monocytogenes under the influence of BVCs. Additionally, the presence of BVCs significantly elevated the pH and TVB-N levels in both the swimming medium and biofilm broth, thereby exhibiting a strong positive correlation with increased motility and biofilm formation of L. monocytogenes. It highlighted the crucial signaling regulatory role of BVCs in bacterial interactions, while also emphasizing the potential food safety risk associated with the hitchhiking behavior of L. monocytogenes, thereby shedding light on advancements in control strategies for food processing.
Assuntos
Listeria monocytogenes , Pseudomonas fluorescens , Pseudomonas fluorescens/fisiologia , Listeria monocytogenes/genética , Técnicas de Cocultura , Natação , Biofilmes , PseudomonasRESUMO
Pseudomonas fragi is a dominant meat spoilage organism under high-oxygen modified atmosphere packaging (HiOx-MAP). This work investigated the effects of CO2 on P. fragi growth and the related spoilage phenomena of HiOx-MAP beef. Minced beef incubated with P. fragi T1, a strain owning the strongest spoilage potential among isolates, was stored under CO2-enriched HiOx-MAP (TMAP; 50% O2/40% CO2/10% N2) or non-CO2 HiOx-MAP (CMAP; 50% O2/50% N2) at 4 °C for 14 days. Compared to CMAP, TMAP maintained sufficient O2 levels to endow beef with higher a* values and meat color stability due to lower P. fragi counts from day 1 (P < 0.05). TMAP samples also showed lower (P < 0.05) lipase activity and protease activity within 14-days and 6-days than CMAP samples respectively. TMAP delayed the significantly increased pH and total volatile basic nitrogen contents occurred in CMAP beef during storage. Despite TMAP markedly promoted the lipid oxidation associated with higher concentrations of hexanal and 2,3-octanedione than CMAP (P < 0.05), TMAP beef retained an acceptable organoleptic odor due to a CO2-inhibition on the microbial-induced 2,3-butanedione and ethyl 2-butenoate formation. This study provided a comprehensive insight into the antibacterial mechanism of CO2 on P. fragi in HiOx-MAP beef.
Assuntos
Dióxido de Carbono , Pseudomonas fragi , Animais , Bovinos , Dióxido de Carbono/farmacologia , Oxigênio/análise , Embalagem de Alimentos , Carne/microbiologiaRESUMO
Chilled beef is inevitably contaminated with microorganisms, starting from the very beginning of the slaughter line. A lot of studies have aimed to improve meat safety and extend the shelf life of chilled beef, of which some have focused on improving the decontamination effects using traditional decontamination interventions, and others have investigated newer technologies and methods, that offer greater energy efficiency, lower environmental impacts, and better assurances for the decontamination of beef carcasses and cuts. To inform industry, there is an urgent need to review these interventions, analyze the merits and demerits of each technology, and provide insight into 'best practice' to preserve microbial safety and beef quality. In this review, the strategies and procedures used to inhibit the growth of microorganisms on beef, from slaughter to storage, have been critiqued. Critical aspects, where there is a lack of data, have been highlighted to help guide future research. It is also acknowledge that different intervention programs for microbiological safety have different applications, dependent on the initial microbial load, the type of infrastructures, and different stages of beef processing.
RESUMO
To investigate the persistence of acid tolerance response (ATR) and the regulatory mechanism during chilled storage, Salmonella ATCC 14028 and the â³phoP mutant were acid adapted and then incubated in meat extract at 4 °C for 24 days as simulated beef storage. The bacterial population, D values and expression of PhoP/PhoQ linked genes of both strains were determined at 6-day intervals. Although a mild suppression effect on the D values of adapted Salmonella was found during the long-time storage in meat extract at 4 °C, the D value of adapted strains was significantly higher than non-adapted strains, indicating the persistence of ATR during the whole aging and distribution of beef posing a threat to food safety. The fact that low temperature inhibits the formation of ATR at the early adapted stage emphasizes the importance of keeping a low-temperature environment during slaughter. An interaction between the acidic adaptation and phoP gene on D values was found and the expression levels of adiA, adiY, cadA and cadB genes was significantly reduced in the â³phoP mutant, suggesting that PhoP/Q system plays an important role in the ATR by sensing the pH and regulating lysine and arginine decarboxylation directly or indirectly.
Assuntos
Proteínas de Bactérias/metabolismo , Carne/microbiologia , Salmonella typhimurium/fisiologia , Ácidos/metabolismo , Adaptação Fisiológica , Animais , Proteínas de Bactérias/genética , Bovinos , Regulação Bacteriana da Expressão GênicaRESUMO
This study evaluated the acid tolerance response (ATR) of two strains of Listeria monocytogenes (serotype 1/2a and 4b) and one strain of Listeria innocua under different mildly acid conditions. Cells were incubated in combinations of three concentrations of lactic acid medium (3, 4.75, and 15 mM) and three external pH's (pHex 5.0, 6.0, and 6.5), plus, a HCl control, and a blank control (pH 7.4). Results showed that lactic acid induced lower log reduction of all three strains when challenged in severe acid conditions (pH 3.0) after being habituated at a pHex of 5.5 or 6.0 until the log phase, compared with a pHex of 6.5 or the two controls. This indicates that when the pHex was either 5.5 or 6.0 this induced a higher ATR of the strains, which may be caused by the ability of the strains to retain intracellular pH (pHi) homeostasis with pHi maintained in the range of 7.4-7.9. It was also found that a pHex of 5.5 resulted in the highest pHi of the strains across all incubated conditions, which indicates that the pHi may play an important role in the induction of ATR when Listeria cells are habituated in lactic acid, and if the higher pHi can be maintained, the ATR would be stronger. The concentration of lactic acid per se has no significant effect on ATR, which it is proposed was due to the pHi homeostasis maintained within the cells. However, the difference in ATR among three strains was also significant, which cannot be explained by the stable pHi of all tested strains. Therefore, other underlying mechanisms to mediate ATR under different conditions need to be explored in further studies.
Assuntos
Ácidos/farmacologia , Tolerância a Medicamentos/fisiologia , Concentração de Íons de Hidrogênio , Listeria monocytogenes/efeitos dos fármacos , Listeria/efeitos dos fármacos , Meios de Cultura , Homeostase , Ácido Láctico/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacosRESUMO
Chilling procedures have been widely used in livestock abattoirs since the development of refrigeration systems. The major criteria when applying chilling regimes is not only complying with regulations, but economic concerns, and also meat safety and quality assurance requirements. Given recent developments, an updated review is required to guide the industry to choose the best chilling method and to inspire the development of new approaches to chilling. Thus in this paper, the quality and microbial safety of beef, lamb, pork, venison, and bison resulting from different chilling treatments has been reviewed, as well as the underlying mechanism(s) for the different impacts on meat quality traits as a result of different chilling regimes. The effect of fast chilling on the tenderness of beef and lamb is a focus, as some new findings, have recently been reported, while multistep chilling is highlighted as it incorporates the advantages of fast chilling to reduce carcass weight loss, resulting in similar quality improvements as found with slow chilling. It is, suggested, that if spray chilling can be combined with the second phase of multi-step chilling, it will benefit the meat industry in terms of both meat quality and safety. Future studies should focus on combinations of chilling methods with new technologies, such as medium voltage electrical stimulation, muscle stretching, or ultrasound and so on, to move meat quality and safety to a new level.
RESUMO
OBJECTIVE: This study investigated the effect of different acute heat stress (HS) levels on chicken meat quality and ultra-structure. METHODS: Chickens were randomly divided into 7 groups to receive different HS treatments: i) 36°C for 1 h, ii) 36°C for 2 h, iii) 38°C for 1 h, iv) 38°C for 2 h, v) 40°C for 1 h, vi) 40°C for 2 h, and vii) un-stressed control group (25°C). Blood cortisol level, breasts initial temperature, color, pH, water holding capacity (WHC), protein solubility and ultra-structure were analyzed. RESULTS: HS temperatures had significant effects on breast meat temperature, lightness (L*), redness (a*), cooking loss and protein solubility (p<0.05). The HS at 36°C increased L*24 h value (p<0.01) and increased the cooking loss (p<0.05), but decreased a*24 h value (p<0.05). However, as the temperature increased to 38°C and 40°C, all the values of L*24 h, cooking loss and protein denaturation level decreased, and the differences disappeared compared to control group (p> 0.05). Only the ultimate pH24 h at 40°C decreased compared to the control group (p<0.01). The pH in 36°C group declined greater than other heat-stressed group in the first hour postmortem, which contributed breast muscle protein degeneration combining with high body temperature, and these variations reflected on poor meat quality parameters. The muscle fiber integrity level in group 40°C was much better than those in 36°C with the denatured position mainly focused on the interval of muscle fibers which probably contributes WHC and light reflection. CONCLUSION: HS at higher temperature (above 38°C) before slaughter did not always lead to more pale and lower WHC breast meat. Breast meat quality parameters had a regression trend as HS temperature raised from 36°C. The interval of muscle fibers at 24 h postmortem and greater pH decline rate with high body temperature in early postmortem period could be a reasonable explanation for the variation of meat quality parameters.
RESUMO
The biofilm formation behavior of Salmonella isolated from beef processing plants was investigated under varying temperatures (4°C, 10°C, 25°C, 37°C, and 42°C) and pH (4.5, 5.0, 5.5, 6.0, 7.0, and 8.0). The relationships between the presence of biofilm-related genes and the biofilm formation capacity were evaluated. A total of 77 Salmonella strains in 8 different serotypes were assessed: Salmonella Agona (n = 43), Salmonella Senftenberg (n = 13), Salmonella Meleagridis (n = 8), Salmonella Derby (n = 7), Salmonella Kottbus (n = 2), Salmonella Calabar (n = 2), Salmonella Kingston (n = 1), and Salmonella Typhimurium (n = 1). The results showed that all tested Salmonella strains produced biofilm at 25°C and 37°C after 3 d, and Salmonella Kingston and Salmonella Senftenberg had higher biofilm production than other strains under test conditions. Serotype, incubation temperature, pH, and their interactions had significant effects on biofilm formation for Salmonella. The strongest biofilm formation capacity of Salmonella (serovar Agona, Senftenberg, Kottbus, Calabar, Kingston, and Typhimurium) occurred at 25°C and at pH 7.0. Biofilm formation was significantly inhibited for all Salmonella strains incubated at 4°C. The detection rates of genes rpoS, fliC, wcaA, and invA were 100%, and the rates of genes csgB, csgD, csrA, sirA, adrA, gly, fimH, sdiA, ompR, sipB, sipC, luxS, and pfs exceeded 75% among all biofilm producer strains. The detection rate of igaA was significantly different between different biofilm producers. Based on the findings in this study, useful information on biofilm formation of Salmonella isolated from beef processing plants in China is provided, which could help clear the technological hurdle in delaying biofilm production to deal with risks from Salmonella biofilms in the beef industry.
Assuntos
Biofilmes/crescimento & desenvolvimento , Salmonella/genética , Salmonella/isolamento & purificação , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/genética , Bovinos , China , Carne Vermelha/microbiologia , Sorogrupo , Temperatura , Virulência/genéticaRESUMO
OBJECTIVE: This study was to determine the bacterial diversity and monitor the community dynamic changes during storage of vacuum-packaged sliced raw beef as affected by Lactobacillus sakei and Lactobacillus curvatus. METHODS: L. sakei and L. curvatus were separately incubated in vacuumed-packaged raw beef as bio-protective cultures to inhibit the naturally contaminating microbial load. Dynamic changes of the microbial diversity of inoculated or non-inoculated (control) samples were monitored at 4°C for 0 to 38 days, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). RESULTS: The DGGE profiles of DNA directly extracted from non-inoculated control samples highlighted the order of appearance of spoilage bacteria during storage, showing that Enterbacteriaceae and Pseudomonas fragi emerged early, then Brochothrix thermosphacta shared the dominant position, and finally, Pseudomonas putida showed up became predominant. Compared with control, the inoculation of either L. sakei or L. curvatus significantly lowered the complexity of microbial diversity and inhibited the growth of spoilage bacteria (p<0.05). Interestingly, we also found that the dominant position of L. curvatus was replaced by indigenous L. sakei after 13 d for L. curvatus-inoculated samples. Plate counts on selective agars further showed that inoculation with L. sakei or L. curvatus obviously reduced the viable counts of Enterbacteraceae, Pseudomonas spp. and B. thermosphacta during later storage (p< 0.05), with L. sakei exerting greater inhibitory effect. Inoculation with both bio-protective cultures also significantly decreased the total volatile basic nitrogen values of stored samples (p<0.05). CONCLUSION: Taken together, the results proved the benefits of inoculation with lactic acid bacteria especially L. sakei as a potential way to inhibit growth of spoilage-related bacteria and improve the shelf life of vacuum-packaged raw beef.
RESUMO
This paper describes the complex effects of postmortem ultimate pH (pHu) on Chinese Yellow crossbreed cattle quality during postmortem ageing and provides an explanation of how pHu affects beef tenderness. High pHu beef had the highest initial tenderness (P < 0.05) compared with other groups at 1 day postmortem. Intermediate and low pHu beef had similar initial WBSF at 1 day postmortem, but intermediate pHu beef had slower tenderization rate than low pHu beef (P < 0.05). Purge loss, cooking loss, L*, a*, and b* values decreased with increasing pHu during ageing (P < 0.05). Myofibril fragmentation index (MFI) was higher in high pHu beef than intermediate and low pHu beef throughout ageing (P < 0.05). Protein degradation studies found that desmin and troponin-T appeared degraded within 0.5 h postmortem for high and low pHu beef, compared to >2 days for intermediate pHu beef. Overall, Chinese Yellow crossbred cattle tenderness is related to pHu, which may be affected by proteolytic enzymatic activity. Therefore, pHu may be used to predict beef tenderness and other quality characteristics during postmortem ageing. To achieve consistent tenderness, different ageing times should be used, depending on pHu.
Assuntos
Bovinos/fisiologia , Carne/normas , Músculo Esquelético/química , Miofibrilas/metabolismo , Mudanças Depois da Morte , Proteólise , Animais , Western Blotting , Cruzamento/métodos , China , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Músculo Esquelético/metabolismoRESUMO
To explore the underlying mechanisms by which superchilling (SC, -3 °C within 5 h of slaughter) improves beef tenderness, an untargeted metabolomics strategy was employed. M. Longissimus lumborum (LL) muscles from twelve beef carcasses were assigned to either SC or very fast chilling (VFC, 0 °C within 5 h of slaughter) treatments, with conventional chilling (CC, 0 â¼ 4 °C until 24 h post-mortem) serving as the control (6 per group). Biochemical properties and metabolites were investigated during the early post-mortem period. The results showed that the degradation of µ-calpain and caspase 3 occurred earlier in SC treated sample, which might be attributed to the accelerated accumulation of free Ca2+. The metabolomic profiles of samples from the SC and CC treatments were clearly distinguished based on partial least squares-discriminant analysis (PLS-DA) at each time point. It is noteworthy that more IMP and 4-hydroxyproline were found in the comparison between SC and CC treatments. According to the results of metabolic pathways analysis and the correlation analysis between traits related to tenderness and metabolites with significant differences (SC vs. CC), it can be suggested that the tenderization effect of the SC treatment may be related to the alteration of arginine and proline metabolism, and purine metabolism in the early post-mortem phase.
Assuntos
Metabolômica , Músculo Esquelético , Carne Vermelha , Animais , Bovinos , Calpaína/metabolismo , Caspase 3/metabolismo , Temperatura Baixa , Análise Discriminante , Manipulação de Alimentos/métodos , Inosina/metabolismo , Inosina/análise , Análise dos Mínimos Quadrados , Espectrometria de Massa com Cromatografia Líquida , Metabolômica/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Mudanças Depois da Morte , Prolina/metabolismo , Carne Vermelha/análiseRESUMO
The storage quality characteristics of fresh pork patties were investigated under 80% O2 modified atmosphere packaging (MAP80:20 = 80% O2/20% CO2) and 40% O2 MAP with various CO2 levels (MAP40:20 = 40% O2/20% CO2/40% N2; MAP40:40 = 40% O2/40% CO2/20% N2; MAP40:60 = 40% O2/60% CO2). Packaged patties were stored for 16 days at 4 °C to monitor their physicochemical (pH, instrumental color, oxidative stability, and fatty acid profile), microbial, and sensorial changes. Results suggested that decreasing O2 levels from 80% to 40% significantly inhibited the lipid oxidation of patties but led to a lower (P < 0.05) color stability. Elevating CO2 levels from 20% to 60% in combination with 40% O2 significantly suppressed bacterial growth and total volatile basic nitrogen production, and thus rendered patties with a better sensory quality and a similar meat color to 80% O2. However, increased CO2 levels promoted lipid oxidation through reducing the antioxidant capacity of patties, which was attributed to a CO2-induced reduction in superoxide dismutase and glutathione peroxidase activities during storage rather than a pH reduction or changes in fatty acid composition. Overall, 40% O2/40% CO2/20% N2 is a realistic alternative for pork patties to improve meat quality and extend the shelf-life to over 16 days.
Assuntos
Carne de Porco , Carne Vermelha , Animais , Suínos , Embalagem de Alimentos/métodos , Dióxido de Carbono , Carne Vermelha/análise , Microbiologia de Alimentos , Antioxidantes/farmacologia , Ácidos Graxos , LipídeosRESUMO
In order to explore the effect of sub-freezing storage on water holding capacity and tenderness of beef, four treatments were compared in this study: sub-freezing (-7 °C) fast sub-freezing (-38 °C until the core temperature achieved to -7 °C), superchilling (-1 °C) and fast frozen (-38 °C until the core temperature achieved to -18 °C) with the latter two treatments serving as the controls. The differences in muscle fiber structure, water distribution, protein oxidation and cytoskeletal protein degradation were studied. The results demonstrated that compared with other treatments, the fast sub-freezing treatment resulted in less structural damage to the muscle fibers and had better water holding capacity. Both sub-freezing and fast sub-freezing treatments inhibited protein oxidation compared with superchilling, but the former treatment's level of protein oxidation was higher than that in fast sub-freezing treatment during long-term storage (42 weeks). In addition, the structural proteins in the sub-freezing and fast sub-freezing treatments underwent faster degradation during long-term storage and therefore the meat was more tender compared with the fast frozen treatment. The results indicate that the fast sub-freezing treatment can be potentially applied in beef storage.
Assuntos
Armazenamento de Alimentos , Congelamento , Oxirredução , Carne Vermelha , Água , Bovinos , Animais , Carne Vermelha/análise , Armazenamento de Alimentos/métodos , Músculo Esquelético/química , Fibras Musculares Esqueléticas/química , Proteínas MuscularesRESUMO
Investigation on the distribution and biological characteristics of Shiga-toxin producing Escherichia coli (STEC) during beef processing is essential for in-plant critical control points and food safety risk assessment. Serogroups and subtypes of stx genes of STEC strains isolated from beef processing lines were first investigated. Identification to cross-contamination among different sampling sites was further conducted by combining multilocus sequence typing (MLST) with the previous distribution and characterization data. The PCR-positive rate for STEC in 435 samples from two slaughter plants in China was 14.3% and the isolation rate for the 62 PCR positive and the entire set of 435 samples were 26% and 3.68% respectively. The existence of serotype O157:H7 (33%) and serogroups O121 (42%) and O26 (21%) as well as the high detection rate of high pathogenic gene stx2a (68%) in these serogroups indicated potential risk to the safety of beef. Traceability analysis showed that hide plays a critical role in cross-contamination between feces, lairage pens and post-washing carcasses from a molecular perspective. Intervening measures revolves around de-hiding should be involved in the in-plant safety control policy according to the tracing analysis.
Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Bovinos , Animais , Escherichia coli Shiga Toxigênica/genética , Proteínas de Escherichia coli/genética , Tipagem de Sequências Multilocus , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Sorogrupo , Fezes , Infecções por Escherichia coli/veterináriaRESUMO
Acidic stress in beef cattle slaughtering abattoirs can induce the acid adaptation response of in-plant contaminated Salmonella. This may further lead to multiple resistance responses threatening public health. Therefore, the acid, heat, osmotic and antibiotic resistances of Salmonella typhimurium (ATCC14028) were evaluated after a 90 min adaption in a pH = 5.4 "mild acid" Luria-Bertani medium. Differences in such resistances were also determined between the ∆phoP mutant and wild-type Salmonella strains to confirm the contribution of the PhoP/PhoQ system. The transcriptomic differences between the acid-adapted and ∆phoP strain were compared to explore the role of the PhoP/Q two-component system in regulating multi-stress resistance. Acid adaptation was found to increase the viability of Salmonella to lethal acid, heat and hyperosmotic treatments. In particular, acid adaptation significantly increased the resistance of Salmonella typhimurium to Polymyxin B, and such resistance can last for 21 days when the adapted strain was stored in meat extract medium at 4 °C. Transcriptomics analysis revealed 178 up-regulated and 274 down-regulated genes in the ∆phoP strain. The Salmonella infection, cationic antimicrobial peptide (CAMP) resistance, quorum sensing and two-component system pathways were down-regulated, while the bacterial tricarboxylic acid cycle pathways were up-regulated. Transcriptomics and RT-qPCR analyses revealed that the deletion of the phoP gene resulted in the down-regulation of the expression of genes related to lipid A modification and efflux pumps. These changes in the gene expression result in the change in net negative charge and the mobility of the cell membrane, resulting in enhanced CAMP resistance. The confirmation of multiple stress resistance under acid adaptation and the transcriptomic study in the current study may provide valuable information for the control of multiple stress resistance and meat safety.
RESUMO
This study compared the shelf-life of beef and pork longissimus lumborum muscles (loins) that had the same initial bacterial loads and were held under the same chilled storage conditions. To identify the underlying pathways, comparisons were conducted from the perspective of the spoilage indicators; protease/lipase activity, and the volatile organic compounds (VOC) generated over 28 d of chilled storage. The initial total viable microbial count (TVC) on Day 0 for both type of meat was 4.3 log10 CFU/g. It was found that the TVC of beef and pork did not differ throughout the total chilled storage period and both ultimately exceeded 7 log10 CFU/g after 28 d. Based on total volatile basic nitrogen (TVB-N) guidelines, pork was spoilt after 21 d of chilled storage and therefore 7 d earlier than beef. Changes in the concentration of VOC spoilage biomarkers, including 1-octen-3-ol, 1-octanol, nonanal, and others, confirmed that pork had a shorter shelf-life than beef. An important reason for the difference in shelf-life between the two types of meat was that pork had a higher protease activity, although the beef had higher levels of total lipase activity. These findings help us understand the differences in the spoilage process of raw meat from different species and explore specific measures to control the spoilage of beef or pork.
Assuntos
Microbiologia de Alimentos , Armazenamento de Alimentos , Carne de Porco , Carne Vermelha , Compostos Orgânicos Voláteis , Animais , Bovinos , Carne Vermelha/microbiologia , Carne Vermelha/análise , Compostos Orgânicos Voláteis/análise , Suínos , Carne de Porco/análise , Carne de Porco/microbiologia , Músculo Esquelético/química , Bactérias , Contagem de Colônia Microbiana , RefrigeraçãoRESUMO
This study investigated the effects of high-pressure processing (HPP) and modified atmosphere packaging (MAP) on 'dark, firm, and dry' (DFD) beef. To optimize the HPP, beef steaks (n = 180) were first processed at different pressures (0.1, 200, 300, 400, 500 MPa). It was found that 400 MPa enhanced DFD beef color and shelf-life. This optimized HPP (400 MPa) was combined with 3 MAP formulations, in a second study (40, 60, or 80% O2-MAP), to determine their effect on DFD beef steaks. HPP (400 MPa) combined with MAP improved DFD beef L* and a*, color scores, and delayed discoloration (P < 0.01). Total plate counts for DFD beef held under 60% O2-MAP was ≤6 log10 CFU/g, even after 14 d of chilled storage. These same samples had shear force and TBARS values significantly lower than observed for DFD beef held under 80% O2-MAP. HPP (400 MPa) combined with 60% O2-MAP is recommended to improve DFD beef quality and shelf-life.
Assuntos
Embalagem de Alimentos , Carne Vermelha , Animais , Bovinos , Músculo Esquelético/química , Oxigênio/análise , Carne Vermelha/análise , Atmosfera , CorRESUMO
The purpose of this study was to evaluate the impact of resveratrol on slow-twitch muscle fiber expression in bovine myotubes. The results revealed that resveratrol enhanced slow myosin heavy chain (MyHC) and suppressed fast MyHC protein expression, accompanied by increased MyHC I/IIa and decreased MyHC IIx/IIb mRNA levels in bovine myotubes (P < 0.05). Resveratrol also enhanced the activities of succinic dehydrogenase (SDH), malate dehydrogenase (MDH) and the mitochondrial DNA (mtDNA) content, but reduced lactate dehydrogenase (LDH) activity (P < 0.05). Meanwhile, the protein and gene expression of AMPK, SIRT1 and PGC-1α were upregulated by resveratrol (P < 0.05). Furthermore, PGC-1α inhibitor SR-18292 could attenuate resveratrol-induced muscle fiber conversion from fast-twitch to slow-twitch. These results suggest that resveratrol might promote muscle fiber type transition from fast-twitch to slow-twitch through the AMPK/PGC-1α signaling pathway and mitochondrial biogenesis in bovine myotubes.
Assuntos
Proteínas Quinases Ativadas por AMP , Fibras Musculares de Contração Lenta , Animais , Bovinos , Fibras Musculares de Contração Lenta/metabolismo , Resveratrol/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Transdução de Sinais , Músculo Esquelético/metabolismoRESUMO
Probiotics can improve animal health by regulating intestinal flora balance, improving the structure of the intestinal mucosa, and enhancing intestinal barrier function. At present, the use of probiotics has been a research hotspot in prevention and treatment of different diseases at home and abroad. This review has summarized the researchers and applications of probiotics in prevention and treatment of swine diseases, and elaborated the relevant mechanisms of probiotics, which aims to provide a reference for probiotics better applications to the prevention and treatment of swine diseases.
RESUMO
The aim of this study was to investigate the biological inhibiting effect of a beef-derived Latilactobacillus sakei (RS-25) on the spoilage of beef steaks in overwrapped packaging during the 12 days of storage at 4°C. Beef quality as well as microbial indicators were determined at different intervals during the storage after the inoculation of RS-25 at the 6 log CFU/g, and the high-throughput sequencing was applied to investigate the changes of microbial community structure during the storage. The inoculation of RS-25 on beef had no effect (p > .05) on pH, TBARS, and TVB-N during storage indicating the weak effect of such strain on the eat quality. Furthermore, the rise of L* and the delayed decline of a* and b* reveal the protection effect of RS-25 on the meat color. RS-25 reduced the re-contaminated Salmonella typhimurium by 1.16 log CFU/g (p < .01), and the growth of Brochothrix thermosphacta was also inhibited but no inhibition was found on the Pseudomonas spp. at the first 6 days of storage. The inhibiting effect of RS-25 was covered by the rapid growth of other microorganism during the following 6 days of storage. Consistent with the microbial counts results, high-throughput sequencing analysis confirmed that the inoculated L. sakei RS-25 was dominant at first 6 days, and then replaced by Pseudomonas spp. The findings obtained from the current study may provide basic information for the further application of bioprotective bacteria in preservation of beef steaks in the overwrapped packaging.