Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 8(10): e1002974, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133370

RESUMO

Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. Several A. brassicicola genes have been characterized as affecting pathogenesis of Brassica species. To study regulatory mechanisms of pathogenesis, we mined 421 genes in silico encoding putative transcription factors in a machine-annotated, draft genome sequence of A. brassicicola. In this study, targeted gene disruption mutants for 117 of the transcription factor genes were produced and screened. Three of these genes were associated with pathogenesis. Disruption mutants of one gene (AbPacC) were nonpathogenic and another gene (AbVf8) caused lesions less than half the diameter of wild-type lesions. Unexpectedly, mutants of the third gene, Amr1, caused lesions with a two-fold larger diameter than the wild type and complementation mutants. Amr1 is a homolog of Cmr1, a transcription factor that regulates melanin biosynthesis in several fungi. We created gene deletion mutants of Δamr1 and characterized their phenotypes. The Δamr1 mutants used pectin as a carbon source more efficiently than the wild type, were melanin-deficient, and more sensitive to UV light and glucanase digestion. The AMR1 protein was localized in the nuclei of hyphae and in highly melanized conidia during the late stage of plant pathogenesis. RNA-seq analysis revealed that three genes in the melanin biosynthesis pathway, along with the deleted Amr1 gene, were expressed at low levels in the mutants. In contrast, many hydrolytic enzyme-coding genes were expressed at higher levels in the mutants than in the wild type during pathogenesis. The results of this study suggested that a gene important for survival in nature negatively affected virulence, probably by a less efficient use of plant cell-wall materials. We speculate that the functions of the Amr1 gene are important to the success of A. brassicicola as a competitive saprophyte and plant parasite.


Assuntos
Alternaria/metabolismo , Alternaria/patogenicidade , Proteínas Fúngicas/biossíntese , Regulação Fúngica da Expressão Gênica , Melaninas/biossíntese , Fatores de Transcrição/metabolismo , Alternaria/genética , Brassica/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genes Fúngicos , Melaninas/genética , Mutação , Pectinas/metabolismo , Fenótipo , Doenças das Plantas/microbiologia , Fatores de Transcrição/genética
2.
J Nematol ; 45(4): 265-71, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24379485

RESUMO

Field experiments were conducted in Maryland to investigate the influence of sunn hemp cover cropping in conjunction with organic and synthetic fertilizers on the nematode community in a zucchini cropping system. Two field treatments, zucchini planted into a sunn hemp living and surface mulch (SH) and zucchini planted into bare-ground (BG) were established during three field seasons from 2009 to 2011. In 2009, although SH slightly increased nematode richness compared with BG by the first harvest (P < 0.10), it reduced nematode diversity and enrichment indices (P < 0.01 and P < 0.10, respectively) and increased the channel index (P < 0.01) compared to BG at the final harvest. This suggests a negative impact of SH on nematode community structure. The experiment was modified in 2010 and 2011 where the SH and BG main plots were further split into two subplots to investigate the added influence of an organic vs. synthetic fertilizer. In 2010, when used as a living and surface mulch in a no-till system, SH increased bacterivorous, fungivorous, and total nematodes (P < 0.05) by the final zucchini harvest, but fertilizer type did not influence nematode community structure. In 2011, when incorporated into the soil before zucchini planting, SH increased the abundance of bacterivorous and fungivorous nematodes early in the cropping season. SH increased species richness also at the end of the season (P < 0.05). Fertilizer application did not appear to influence nematodes early in the season. However, in late season, organic fertilizers increased enrichment and structure indices and decreased channel index by the end of the zucchini cropping cycle.

3.
J Nematol ; 44(1): 72-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23482700

RESUMO

Sunn hemp (SH), Crotolaria juncea, is known to suppress Rotylenchulus reniformis and weeds while enhancing free-living nematodes involved in nutrient cycling. Field trials were conducted in 2009 (Trial I) and 2010 (Trial II) to examine if SH cover cropping could suppress R. reniformis and weeds while enhancing free-living nematodes if integrated with soil solarization (SOL). Cover cropping of SH, soil solarization, and SH followed by SOL (SHSOL) were compared to weedy fallow control (C). Rotylenchulus reniformis population was suppressed by SHSOL at the end of cover cropping or solarization period (Pi) in Trial I, but not in Trial II. However, SOL and SHSOL did not suppress R. reniformis compared to SH in either trial. SH enhanced abundance of bacterivores and suppressed the % herbivores only at Pi in Trial II. At termination of the experiment, SH resulted in a higher enrichment index indicating greater soil nutrient availability, and a higher structure index indicating a less disturbed nematode community compared to C. SOL suppressed bacterivores and fungivores only in Trial II but not in Trial I. On the other hand, SHSOL enhanced bacterivores and fungivores only at Pi in Trial I. Weeds were suppressed by SH, SOL and SHSOL throughout the experiment. SHSOL suppressed R. reniformis and enhanced free-living nematodes better than SOL, and suppressed weeds better than SH.

4.
J Nematol ; 44(1): 26-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23482862

RESUMO

Although marigold (Tagetes patula) is known to produce allelopathic compounds toxic to plant-parasitic nematodes, suppression of Meloidogyne incognita can be inconsistent. Two greenhouse experiments were conducted to test whether marigold is more effective in suppressing Meloidogyne spp. when it is active rather than dormant. Soils infested with Meloidogyne spp. were collected and conditioned in the greenhouse either by 1) keeping the soil dry (DRY), 2) irrigating with water (IRR), or 3) drenching with cucumber (Cucumis sativus) leachate (CL) for 5 wk. These soils were then either planted with cucumber, marigold or remained bare for 10 wk. Suppression of nematode by marigold was then assayed using cucumber. DRY conditioning resulted in the highest number of inactive nematodes, whereas CL and IRR had higher numbers of active nematodes than DRY. At the end of the cucumber bioassay, marigold suppressed the numbers of Meloidogyne females in cucumber roots if the soil was conditioned in IRR or CL, but not in DRY. However, in separate laboratory assays, marigold root leachate slightly reduced M. incognita J2 activity but did not reduce egg hatch (P > 0.05). These finding suggest that marigold can only suppress Meloidogyne spp. when marigold is actively growing. This further suggests that marigold will more efficiently suppress Meloidogyne spp. if planted when these nematodes are in active stage.

5.
J Nematol ; 42(2): 111-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22736847

RESUMO

A field trial was conducted to examine whether strip-tilled cover cropping followed by living mulch practice could suppress root-knot nematode (Meloidogyne incognita) and enhance beneficial nematodes and other soil mesofauna, while suppressing weeds throughout two vegetable cropping seasons. Sunn hemp (SH), Crotalaria juncea, and French marigold (MG), Tagetes patula, were grown for three months, strip-tilled, and bitter melon (Momordica charantia) seedlings were transplanted into the tilled strips; the experiment was conducted twice (Season I and II). Strip-tilled cover cropping with SH prolonged M. incognita suppression in Season I but not in Season II where suppression was counteracted with enhanced crop growth. Sunn hemp also consistently enhanced bacterivorous and fungivorous nematode population densities prior to cash crop planting, prolonged enhancement of the Enrichment Index towards the end of both cash crop cycles, and increased numbers of soil mesoarthropods. Strip-tilled cover cropping of SH followed by clipping of the living mulch as surface mulch also reduced broadleaf weed populations up to 3 to 4 weeks after cash crop planting. However, SH failed to reduce soil disturbance as indicated by the Structure Index. Marigold suppressed M. incognita efficiently when planted immediately following a M. incognita-susceptible crop, but did not enhance beneficial soil mesofauna including free-living nematodes and soil mesoarthropods. Strip-tilled cover cropping of MG reduced broadleaf weed populations prior to cash crop planting in Season II, but this weed suppression did not last beyond the initial cash crop cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA