Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15648-15656, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38764425

RESUMO

All-solid-state lithium batteries (ASSLBs) have sparked interest due to their far superior energy density compared to current commercial material, but the heightened reactivity of the negative Li electrode can compromise the long-term cyclability of the cell, calling for the introduction of passivating layers or alloy anodes. In this article, we aim to explain the outstanding stability of LiIn alloy-based anodes over extended cycling by comparing its bulk and interface properties to Li-metal. Using density functional theory, we conducted an in-depth analysis of the LiIn surfaces' formation and subsequent structural stability in interfaces with the solid electrolyte ß-Li3PS4. Several LiIn facets are shown to possess sufficient structural stability, with the (110) surface being the most stable. The stable interfaces established with the ß-Li3PS4(100) surface featured favorable adhesion energy, low strain energy, and little reconstruction. By comparing these interface properties with the bulk properties of Li-metal and LiIn, we highlighted the influence of the cohesion energy, Fermi energy level, and band position of the two materials in the long-term stability of their anodes under battery conditions.

2.
Langmuir ; 39(51): 18797-18806, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079509

RESUMO

Solid electrolytes have shown superior behavior and many advantages over liquid electrolytes, including simplicity in battery design. However, some chemical and structural instability problems arise when solid electrolytes form a direct interface with the negative Li-metal electrode. In particular, it was recognized that the interface between the ß-Li3PS4 crystal and lithium anode is quite unstable and tends to promote structural defects that inhibit the correct functioning of the device. As a possible way out of this problem, we propose a material, Li2S, as a passivating coating for the Li/ß-Li3PS4 interface. We investigated the mutual affinity between Li/Li2S and Li2S/ß-Li3PS4 interfaces by DFT methods and investigated the structural stability through the adhesion energy and mechanical stress. Furthermore, a topological analysis of the electron density identified preferential paths for the migration of Li ions.

3.
Phys Chem Chem Phys ; 24(37): 22978-22986, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36125328

RESUMO

Lithium superionic conductor electrolytes may enable the safe use of metallic lithium anodes in all-solid-state batteries. The key to a successful application is a high Li conductivity in the electrolyte material, to be achieved through the maintenance of intimate contact with the electrodes and the knowledge of the chemical nature of that contact. In this manuscript, we tackle this issue by a theoretical ab initio approach. Focusing on the Li6PS5Cl, a thiophosphate with high ionic conductivity, we carry on thorough modeling of the surfaces together with the prediction of the thermal and elastic behaviour. Our investigation leads to some new findings: the bulk structure, as reported in the literature, appears to be metastable, with spontaneous symmetry breaking. Moreover, the relevant stoichiometric surfaces identified for stable and metastable crystal structures are not up-down symmetry related and they expose from one side Li2S and LiCl. Surface reconstructions can be interpreted as local phase transitions. We also predict entirely ab initio the morphology of crystallites, charge, and electrostatic potential at surfaces, together with the effect of temperature on structural properties and the elastic behaviour of this material. Such findings may constitute the relevant groundwork for a better understanding of ionic transport in Li-ion conductors at the electrolyte/anode and electrolyte/cathode interfaces.

4.
J Phys Chem A ; 125(18): 4003-4012, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33909439

RESUMO

A general, versatile and automated computational algorithm to design any type of multiwall nanotubes of any chiralities is presented for the first time. It can be applied to rolling up surfaces obtained from cubic, hexagonal, and orthorhombic lattices. Full exploitation of the helical symmetry permits a drastic reduction of the computational cost and therefore opens to the study of realistic systems. As a test case, the structural, electronic, mechanical, and transport properties of multiwall carbon nanotubes (MWCNT) are calculated using a density functional theory approach, and results are compared with those of the corresponding layered (graphene-like) precursors. The interaction between layers has a general minimum for the inter-wall distance of ≈3.4 Å, in good agreement with experimental and computed optimal distances in graphene sheets. The metallic armchair and semiconductor zigzag MWCNT are almost isoenergetic and their stability increases as the number of walls increases. The vibrational fingerprint provides a reliable tool to identify the chirality and the thickness of the nanostructures. Finally, some promising thermoelectric features of the semiconductor MWCNT are reproduced and discussed.

5.
Nanomaterials (Basel) ; 12(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014660

RESUMO

The all-solid-state lithium-ion battery is a new class of batteries being developed following today's demand for renewable energy storage, especially for electric cars. The key component of such batteries is the solid-state electrolyte, a technology that promises increased safety and energy density with respect to the traditional liquid electrolytes. In this view, ß-Li3PS4 is emerging as a good solid-state electrolyte candidate due to its stability and ionic conductivity. Despite the number of recent studies on this material, there is still much to understand about its atomic structure, and in particular its surface, a topic that becomes of key relevance for ionic diffusion and chemical stability in grain borders and contact with the other device components. In this study, we performed a density functional study of the structural and electronic properties of ß-Li3PS4 surfaces. Starting from the bulk, we first verified that the thermodynamically stable structure featured slight distortion to the structure. Then, the surfaces were cut along different crystallographic planes and compared with each other. The (100) surface is confirmed as the most stable at T = 298 K, closely followed by (011), (010), and (210). Finally, from the computed surface energies, the Wulff nanocrystals were obtained and it was verified that the growth along the (100) and (011) directions reasonably reproduces the shape of the experimentally observed nanocrystal. With this study, we demonstrate that there are other surfaces besides (100) that are stable and can form interfaces with other components of the battery as well as facilitate the Li-migration according to their porous structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA