Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34426498

RESUMO

Observational knowledge of the epidemic intensity, defined as the number of deaths divided by global population and epidemic duration, and of the rate of emergence of infectious disease outbreaks is necessary to test theory and models and to inform public health risk assessment by quantifying the probability of extreme pandemics such as COVID-19. Despite its significance, assembling and analyzing a comprehensive global historical record spanning a variety of diseases remains an unexplored task. A global dataset of historical epidemics from 1600 to present is here compiled and examined using novel statistical methods to estimate the yearly probability of occurrence of extreme epidemics. Historical observations covering four orders of magnitude of epidemic intensity follow a common probability distribution with a slowly decaying power-law tail (generalized Pareto distribution, asymptotic exponent = -0.71). The yearly number of epidemics varies ninefold and shows systematic trends. Yearly occurrence probabilities of extreme epidemics, Py, vary widely: Py of an event with the intensity of the "Spanish influenza" (1918 to 1920) varies between 0.27 and 1.9% from 1600 to present, while its mean recurrence time today is 400 y (95% CI: 332 to 489 y). The slow decay of probability with epidemic intensity implies that extreme epidemics are relatively likely, a property previously undetected due to short observational records and stationary analysis methods. Using recent estimates of the rate of increase in disease emergence from zoonotic reservoirs associated with environmental change, we estimate that the yearly probability of occurrence of extreme epidemics can increase up to threefold in the coming decades.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2 , COVID-19/história , Surtos de Doenças , Saúde Global , História do Século XX , História do Século XXI , Humanos , Vigilância em Saúde Pública
2.
Proc Natl Acad Sci U S A ; 115(7): 1463-1468, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378949

RESUMO

The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths.

3.
Environ Sci Technol ; 54(1): 286-296, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31825606

RESUMO

Artisanal and small-scale gold mining (ASGM) is a significant contributor of mercury (Hg) contamination and deforestation across the globe. In the Colorado River watershed in Madre de Dios, Peru, mining and deforestation have increased exponentially since the 1980s, resulting in major socioeconomic shifts in the region and two national state of emergency (2016 and 2019) in response to concerns for wide-scale mercury poisoning by these activities. This research employed a watershed-scale soil particle detachment model and environmental field sampling to estimate the role of land cover change and soil erosion on river transport of Hg in a heavily ASGM-impacted watershed. The model estimated that observed decreases in forest cover increased soil mobilization by a factor of two in the Colorado River watershed during the 18 year period and by 4-fold in the Puquiri subwatershed (the area of most concentrated ASGM activity). If deforestation continues to increase at its current exponential rate through 2030, the annual mobilization of soil and Hg may increase by an additional 20-25% relative to 2014 levels. While, the estimated total mass of Hg transported by rivers is substantially less than the estimated tons of Hg used with ASGM in Peru, this research shows that deforestation associated with ASGM is an additional mechanism for mobilizing naturally occurring and anthropogenic Hg from terrestrial landscapes to aquatic environments in the region, potentially leading to bioaccumulation in fish and exposure to communities downstream.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Conservação dos Recursos Naturais , Monitoramento Ambiental , Ouro , Mineração , Peru , Solo
4.
Proc Natl Acad Sci U S A ; 112(51): 15580-4, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644577

RESUMO

The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought.


Assuntos
Atmosfera , Dióxido de Carbono , Mudança Climática , Áreas Alagadas , Biomassa , Sequestro de Carbono , Sedimentos Geológicos , Desenvolvimento Vegetal , Água do Mar
5.
Glob Chang Biol ; 22(6): 2238-54, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26762609

RESUMO

Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the southeastern United States.


Assuntos
Atmosfera/química , Florestas , Pinus taeda/fisiologia , Solo/química , Ciclo Hidrológico , Tempo (Meteorologia) , Modelos Teóricos , Sudeste dos Estados Unidos
6.
Ecol Appl ; 26(8): 2609-2620, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27865031

RESUMO

The prediction of mosquito abundance is of central interest in addressing mosquito population dynamics and in forecasting the associated emerging and re-emerging diseases. However, little work has focused on the systematic evaluation of how well adult mosquito abundance can be predicted as a function of observational resolutions, aggregation scales, and prediction lead time. We use a state space reconstruction (SSR) approach to compare the predictability of mosquito population dynamics at weekly, biweekly, and monthly scales. We focus on the analysis of Aedes vexans and Culiseta melanura populations monitored in Brunswick County (North Carolina, USA) and find that prediction over a 7-d lead time is improved when daily observations are used, compared to the commonly used once-per-week sample. Our results demonstrate that daily observations of mosquito abundance contribute to improving mosquito predictability in two ways: (1) daily observations better capture fluctuations over short timescales, which are missed when sampling at coarser resolutions, and (2) the aggregation of daily abundance observations reduces the impact of noise, thereby increasing the predictability of mosquito population dynamics as the aggregation scale is increased. We show that the evaluation of population dynamical models based on observed and predicted abundance can lead to a spuriously high apparent performance, due to the high autocorrelation in the observations used to update the model state at each successive time step. We show that the comparison of predicted and observed population change, expressed through per capita growth rates, leads to a more informative performance measure.


Assuntos
Aedes , Animais , Previsões , Insetos Vetores , North Carolina , Dinâmica Populacional
7.
Proc Natl Acad Sci U S A ; 110(9): 3259-63, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401529

RESUMO

Marshes display impressive biogeomorphic features, such as zonation, a mosaic of extensive vegetation patches of rather uniform composition, exhibiting sharp transitions in the presence of extremely small topographic gradients. Although generally associated with the accretion processes necessary for marshes to keep up with relative sea level rise, competing environmental constraints, and ecologic controls, zonation is still poorly understood in terms of the underlying biogeomorphic mechanisms. Here we find, through observations and modeling interpretation, that zonation is the result of coupled geomorphological-biological dynamics and that it stems from the ability of vegetation to actively engineer the landscape by tuning soil elevation within preferential ranges of optimal adaptation. We find multiple peaks in the frequency distribution of observed topographic elevation and identify them as the signature of biologic controls on geomorphodynamics through competing stable states modulated by the interplay of inorganic and organic deposition. Interestingly, the stable biogeomorphic equilibria correspond to suboptimal rates of biomass production, a result coherent with recent observations. The emerging biogeomorphic structures may display varying degrees of robustness to changes in the rate of sea level rise and sediment availability, with implications for the overall resilience of marsh ecosystems to climatic changes.


Assuntos
Fenômenos Fisiológicos Vegetais , Áreas Alagadas , Coleta de Dados , Modelos Biológicos , Solo , Especificidade da Espécie , Processos Estocásticos
8.
Sci Adv ; 8(13): eabm8446, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35363513

RESUMO

Coastal flooding prevention measures, such as storm-surge barriers, are being widely adopted globally because of the accelerating rise in sea levels. However, their impacts on the morphodynamics of shallow tidal embayments remain poorly understood. Here, we combine field data and modeling results from the microtidal Venice Lagoon (Italy) to identify short- and long-term consequences of flood regulation on lagoonal landforms. Artificial reduction of water levels enhances wave-induced sediment resuspension from tidal flats, promoting in-channel deposition, at the expense of salt marsh vertical accretion. In Venice, we estimate that the first 15 closures of the recently installed mobile floodgates operated between October 2020 and January 2021 contributed to a 12% reduction in marsh deposition, simultaneously promoting a generalized channel infilling. Therefore, suitable countermeasures need to be taken to offset these processes and prevent significant losses of geomorphic diversity due to repeated floodgate closures, whose frequency will increase as sea levels rise further.

9.
PLoS One ; 9(12): e114301, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25478861

RESUMO

An improved understanding of mosquito population dynamics under natural environmental forcing requires adequate field observations spanning the full range of temporal scales over which mosquito abundance fluctuates in natural conditions. Here we analyze a 9-year daily time series of uninterrupted observations of adult mosquito abundance for multiple mosquito species in North Carolina to identify characteristic scales of temporal variability, the processes generating them, and the representativeness of observations at different sampling resolutions. We focus in particular on Aedes vexans and Culiseta melanura and, using a combination of spectral analysis and modeling, we find significant population fluctuations with characteristic periodicity between 2 days and several years. Population dynamical modelling suggests that the observed fast fluctuations scales (2 days-weeks) are importantly affected by a varying mosquito activity in response to rapid changes in meteorological conditions, a process neglected in most representations of mosquito population dynamics. We further suggest that the range of time scales over which adult mosquito population variability takes place can be divided into three main parts. At small time scales (indicatively 2 days-1 month) observed population fluctuations are mainly driven by behavioral responses to rapid changes in weather conditions. At intermediate scales (1 to several month) environmentally-forced fluctuations in generation times, mortality rates, and density dependence determine the population characteristic response times. At longer scales (annual to multi-annual) mosquito populations follow seasonal and inter-annual environmental changes. We conclude that observations of adult mosquito populations should be based on a sub-weekly sampling frequency and that predictive models of mosquito abundance must include behavioral dynamics to separate the effects of a varying mosquito activity from actual changes in the abundance of the underlying population.


Assuntos
Aedes/fisiologia , Ritmo Circadiano/fisiologia , Modelos Biológicos , Animais , Feminino , Masculino , North Carolina , Dinâmica Populacional
10.
Philos Trans A Math Phys Eng Sci ; 371(2004): 20120367, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24471266

RESUMO

The presence and continued existence of tidal morphologies, and in particular of salt marshes, is intimately connected with biological activity, especially with the presence of halophytic vegetation. Here, we review recent contributions to tidal biogeomorphology and identify the presence of multiple competing stable states arising from a two-way feedback between biomass productivity and topographic elevation. Hence, through the analysis of previous and new results on spatially extended biogeomorphological systems, we show that multiple stable states constitute a unifying framework explaining emerging patterns in tidal environments from the local to the system scale. Furthermore, in contrast with traditional views we propose that biota in tidal environments is not just passively adapting to morphological features prescribed by sediment transport, but rather it is 'The Secret Gardener', fundamentally constructing the tidal landscape. The proposed framework allows to identify the observable signature of the biogeomorphic feedbacks underlying tidal landscapes and to explore the response and resilience of tidal biogeomorphic patterns to variations in the forcings, such as the rate of relative sea-level rise.


Assuntos
Ecossistema , Modelos Teóricos , Desenvolvimento Vegetal , Reologia/métodos , Ondas de Maré , Simulação por Computador
11.
Philos Trans A Math Phys Eng Sci ; 371(2004): 20120367, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24191119

RESUMO

The presence and continued existence of tidal morphologies, and in particular of salt marshes, is intimately connected with biological activity, especially with the presence of halophytic vegetation. Here, we review recent contributions to tidal biogeomorphology and identify the presence of multiple competing stable states arising from a two-way feedback between biomass productivity and topographic elevation. Hence, through the analysis of previous and new results on spatially extended biogeomorphological systems, we show that multiple stable states constitute a unifying framework explaining emerging patterns in tidal environments from the local to the system scale. Furthermore, in contrast with traditional views we propose that biota in tidal environments is not just passively adapting to morphological features prescribed by sediment transport, but rather it is 'The Secret Gardener', fundamentally constructing the tidal landscape. The proposed framework allows to identify the observable signature of the biogeomorphic feedbacks underlying tidal landscapes and to explore the response and resilience of tidal biogeomorphic patterns to variations in the forcings, such as the rate of relative sea-level rise.


Assuntos
Biomassa , Áreas Alagadas , Ecossistema
12.
PLoS One ; 1: e78, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17183710

RESUMO

The neutral theory of biodiversity constitutes a reference null hypothesis for the interpretation of ecosystem dynamics and produces relatively simple analytical descriptions of basic system properties, which can be easily compared to observations. On the contrary, investigations in non-neutral dynamics have in the past been limited by the complexity arising from heterogeneous demographic behaviours and by the relative paucity of detailed observations of the spatial distribution of species diversity (beta-diversity): These circumstances prevented the development and testing of explicit non-neutral mathematical descriptions linking competitive strategies and observable ecosystem properties. Here we introduce an exact non-neutral model of vegetation dynamics, based on cloning and seed dispersal, which yields closed-form characterizations of beta-diversity. The predictions of the non-neutral model are validated using new high-resolution remote-sensing observations of salt-marsh vegetation in the Venice Lagoon (Italy). Model expressions of beta-diversity show a remarkable agreement with observed distributions within the wide observational range of scales explored (5 x 10(-1) m divided by 10(3) m). We also consider a neutral version of the model and find its predictions to be in agreement with the more limited characterization of beta-diversity typical of the neutral theory (based on the likelihood that two sites be conspecific or heterospecific, irrespective of the species). However, such an agreement proves to be misleading as the recruitment rates by propagules and by seed dispersal assumed by the neutral model do not reflect known species characteristics and correspond to averages of those obtained under the more general non-neutral hypothesis. We conclude that non-neutral beta-diversity characterizations are required to describe ecosystem dynamics in the presence of species-dependent properties and to successfully relate the observed patterns to the underlying processes.


Assuntos
Biodiversidade , Modelos Biológicos , Plantas , Evolução Biológica , Ecossistema , Itália , Desenvolvimento Vegetal , Plantas/genética , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA