Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296701

RESUMO

Myrtaceae family is a continuous source of antimicrobial agents. In the search for novel antimicrobial agents against Staphylococcus species, bioactive fractions of Myrtus communis L., growing in the Sardinia island (Italy) have been investigated. Their phytochemical analysis led us to isolate and characterize four alkylphloroglucinol glycosides (1-4), three of them gallomyrtucommulones G-H (1,2), and myrtucommulonoside (4) isolated and characterized for the first time. The structures of the new and known compounds, endopreroxide G3 (5), myricetin-3-O-glycosides (6,7) were determined based on the spectroscopic evidence including 1D-/2D-NMR and HR-MS spectrometry. Enriched fractions as well as pure compounds were tested for their antimicrobial activity by broth micro-dilution assay against Staphylococcus epidermidis and S. aureus. Results reported herein demonstrated that gallomyrtucommulone G (1) showed a selective antimicrobial activity against both S. aureus strains (ATCC 29213 and 43300) until 16 µg/mL while gallomyrtucommulone D (3) showed the best growth inhibition value at 64 µg/mL.


Assuntos
Anti-Infecciosos , Myrtus , Myrtus/química , Floroglucinol/química , Staphylococcus aureus , Staphylococcus , Glicosídeos/farmacologia , Glicosídeos/análise , Testes de Sensibilidade Microbiana , Folhas de Planta/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Anti-Infecciosos/análise , Antibacterianos/química , Extratos Vegetais/química
2.
Curr Microbiol ; 77(12): 3831-3841, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33079206

RESUMO

The gut microbiota is a complex microbial ecosystem where bacteria, through mutual interactions, cooperate in maintaining of wellbeing and health. Lactobacilli are among the most important constituents of human and animal intestinal microbiota and include many probiotic strains. Their presence ensures protection from invasion of pathogens, as well as stimulation of the immune system and protection of the intestinal flora, often exerted through the ability to interact with mucus and extracellular matrix components. The main factors responsible for mediating adhesion of pathogens and commensals to the gut are cell surface proteins that recognize host targets, as mucus layer and extracellular matrix proteins. In the last years, several adhesins have been reported to be involved in lactobacilli-host interaction often miming the same mechanism used by pathogens.


Assuntos
Lactobacillus , Probióticos , Animais , Aderência Bacteriana , Ecossistema , Matriz Extracelular , Humanos , Proteínas de Membrana , Muco
3.
Molecules ; 23(9)2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181476

RESUMO

Lactobacillus plantarum is one of the most predominant species in the human gut microbiota of healthy individuals. We have previously characterized some probiotic features of L. plantarum LM3, as the high resistance to different stress, the binding ability toward some extracellular matrix proteins and plasminogen and the immunomodulatory role of the surface expressed adhesin EnoA1. We have also identified the flmA, flmB and flmC genes, coding for putative proteins named FlmA, FlmB and FlmC, whose null mutations partially impaired biofilm development; the L. plantarum LM3⁻6 strain, carrying a deletion in flmC, showed a high rate of autolysis, supporting the hypothesis that FlmC might be involved in cell wall integrity. Here, we report the in-silico characterization of ΔTM-FlmC, a portion of the FlmC protein. The protein has been also expressed, purified and characterized by means of CD spectroscopy, ICP-mass and UHPLC-HRMS. The obtained experimental data validated the predicted model unveiling also the presence of a bound lipid molecule and of a Mg(II) ion. Overall, we provide strong evidences that ΔTM-FlmC belongs to the LytR-CpsA-Psr (LCP) family of domains and is involved in cell envelope biogenesis.


Assuntos
Proteínas de Bactérias/química , Biofilmes/crescimento & desenvolvimento , Lactobacillus plantarum/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Íons , Lipídeos/química , Magnésio/química , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Agregados Proteicos , Domínios Proteicos , Reprodutibilidade dos Testes , Análise de Sequência de Proteína , Temperatura
4.
J Basic Microbiol ; 57(4): 353-357, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27859408

RESUMO

Multi-functional surface proteins have been observed in a variety of pathogenic bacteria, where they mediate host cell adhesion and invasion, as well as in commensal bacterial species, were they mediate positive interaction with the host. Among these proteins, some glycolytic enzymes, expressed on the bacterial cell surface, can bind human extracellular matrix components (ECM). A major target for them is collagen, an abundant glycoprotein of connective tissues. We have previously shown that the enolase EnoA1 of Lactobacillus plantarum, one of the most predominant species in the gut microbiota of healthy individuals, is involved in binding with collagen type I (CnI). In this study, we found that PDHB, a component of the pyruvate dehydrogenase complex, contributes to the L. plantarum LM3 adhesion to CnI. By a cellular adhesion assay to immobilized CnI, we show that LM3-B1 cells, carrying a null mutation in the pdhB gene, bind to CnI - coated surfaces less efficiently than wild-type cells. Moreover, we show that the PDHB-CnI interaction requires a native state for PDHB. We also analyzed the ability to develop biofilm in wild-type and mutant strains and we found that the lack of the PDHB on cell surface generates cells partially impaired in biofilm development.


Assuntos
Adesinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Colágeno/metabolismo , Lactobacillus plantarum/enzimologia , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Adesinas Bacterianas/química , Aderência Bacteriana , Humanos , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Mutação , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/isolamento & purificação
5.
Arch Microbiol ; 198(3): 295-300, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26546316

RESUMO

Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.


Assuntos
Regulação Bacteriana da Expressão Gênica , Lactobacillus plantarum/genética , Família Multigênica/genética , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Genes Reguladores/genética , Lactobacillus plantarum/metabolismo , Óperon/genética
6.
J Basic Microbiol ; 55(7): 890-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25721875

RESUMO

Collagen is a target of pathogens for adhesion, colonization, and invasion of host tissue. Probiotic bacteria can mimic the same mechanism as used by the pathogens in the colonization process, expressing cell surface proteins that specifically interact with extracellular matrix component proteins. The capability to bind collagen is expressed by several Lactobacillus isolates, including some Lactobacillus plantarum strains. In this study we report the involvement of the L. plantarum EnoA1 alfa-enolase in type I collagen (CnI) binding. By adhesion assays, we show that the mutant strain LM3-CC1, carrying a null mutation in the enoA1 gene, binds to immobilized collagen less efficiently than wild type strain. CnI overlay assay and Elisa tests, performed on the purified EnoA1, show that this protein can bind collagen both under denaturing and native conditions. By using truncated recombinant enolase proteins, we also show that the region spanning from 73rd to the 140th amino acid residues is involved in CnI binding.


Assuntos
Aderência Bacteriana , Colágeno/metabolismo , Lactobacillus plantarum/enzimologia , Fosfopiruvato Hidratase/isolamento & purificação , Fosfopiruvato Hidratase/metabolismo , Lactobacillus plantarum/genética , Proteínas de Membrana/metabolismo , Mutação , Fosfopiruvato Hidratase/genética , Ligação Proteica
7.
Foods ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540945

RESUMO

Lactococcus lactis is a lactic acid bacterium (LAB), generally recognized as safe, and has been widely used in the food industry, especially in fermented dairy products. Numerous studies have evaluated the technological and probiotic properties of lactococci; however, few studies have reported the probiotic characteristics of L. lactis strains isolated from dairy products. In this work, probiotic potential, including survival in simulated gastric juice, tolerance to bile salts, hydrophobicity, and auto- and co-aggregation, was evaluated in L. lactis strains from natural whey starter cultures. The results highlighted the potential probiotic properties of some strains under study, which showed high values of hydrophobicity and auto-aggregation and low values of co-aggregation with the tested pathogenic strains. In addition, studies of safety parameters, such as antibiotic susceptibility and haemolytic activity, confirmed the safety status of all strains under study. Finally, the four most promising strains were investigated for their ability to inhibit the enteroinvasive Escherichia coli (EIEC) and Salmonella Typhimurium adhesion to epithelial cells, using a model of co-cultured epithelial cells. The results demonstrated that L. lactis strains A3-A5-I4-I7 showed the ability to compete with pathogens as well as the ability to exert a protective effect on cells previously infected with E. coli or S. Typhimurium. The identification of new probiotic LAB strains from dairy products aims to produce novel functional foods.

8.
J Basic Microbiol ; 53(1): 62-71, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22585750

RESUMO

The aim of this study was to identify genes involved in biofilm development in the probiotic lactic acid bacterium Lactobacillus plantarum. The ability of L. plantarum LM3 and of some derivative mutant strains to form biofilm has been investigated. Biofilm microtitre plate assays showed that L. plantarum LM3-2, carrying a null mutation in the ccpA gene, coding the CcpA master regulator, was partially impaired in biofilm production compared to wild type (LM3). Moreover, we found three genes in the L. plantarum genome, hereby named flmA, flmB, and flmC, whose deduced amino acid sequences show significant identity with the Streptococcus mutans BrpA (biofilm regulatory protein A). We investigated the role of FlmA, FlmB, and FlmC in biofilm formation by isolating strains carrying null mutations in the corresponding genes. Our results suggest involvement of the Flm proteins in biofilm development. Moreover, transcriptional studies show that expression of flmA, flmB, and flmC is under the control of CcpA. These results, together with the reduced ability of LM3-2 (ccpA1) to form biofilm, strongly suggest a positive role of the master regulator CcpA in biofilm development.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , Lactobacillus plantarum/fisiologia , Proteínas Repressoras/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriólise , Genes Bacterianos , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Probióticos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica
9.
Food Res Int ; 173(Pt 1): 113298, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803610

RESUMO

Consumer attention to functional foods containing probiotics is growing because of their positive effects on human health. Kefir is a fermented milk beverage produced by bacteria and yeasts. Given the emerging kefir market, there is an increasing demand for new methodologies to certify product claims such as colony-forming units/g and bacterial taxa. MALDI-TOF MS proved to be useful for the detection/identification of bacteria in clinical diagnostics and agri-food applications. Recently, LC-MS/MS approaches have also been applied to the identification of proteins and proteotypic peptides of lactic acid bacteria in fermented food matrices. Here, we developed an innovative nanoLC-ESI-MS/MS-based methodology for profiling lactic acid bacteria in commercial and artisanal milk kefir products as well as in kefir grains at the genus, species and subspecies level. The proposed workflow enables the authentication of kefir label claims declaring the presence of probiotic starters. An overview of the composition of lactic acid bacteria was also obtained for unlabelled kefir highlighting, for the first time, the great potential of LC-MS/MS as a sensitive tool to assess the authenticity of fermented foods.


Assuntos
Kefir , Lactobacillales , Humanos , Bactérias , Cromatografia Líquida , Kefir/microbiologia , Lactobacillales/metabolismo , Leite/microbiologia , Espectrometria de Massas em Tandem
10.
Sci Rep ; 13(1): 20332, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989843

RESUMO

Drug resistance is one of the most difficult challenges facing tuberculosis (TB) control. Drug efflux is among the mechanisms leading to drug resistance. In our previous studies, we partially characterized the ABC-type MSMEG-3762/63 efflux pump in Mycobacterium smegmatis, which shares high percentage of identity with the Mycobacterium tuberculosis Rv1687/86c pump. MSMEG-3762/63 was shown to have extrusion activity for rifampicin and ciprofloxacin, used in first and second-line anti-TB treatments. Moreover, we described the functional role of the TetR-like MSMEG-3765 protein as a repressor of the MSMEG_3762/63/65 operon and orthologous Rv1687/86/85c in M. tuberculosis. Here we show that the operon is upregulated in the macrophage environment, supporting a previous observation of induction triggered by acid-nitrosative stress. Expression of the efflux pump was also induced by sub-inhibitory concentrations of rifampicin or ciprofloxacin. Both these drugs also prevented the binding of the MSMEG-3765 TetR repressor protein to its operator in the MSMEG_3762/63/65 operon. The hypothesis that these two drugs might be responsible for the induction of the efflux pump operon was assessed by bioinformatics analyses. Docking studies using a structural model of the regulator MSMEG-3765 showed that both antibiotics abolished the ability of this transcriptional repressor to recognize the efflux pump operon by interacting with the homodimer at different binding sites within the same binding pocket. Reduced binding of the repressor leads to induction of the efflux pump in M. smegmatis, and reduced efficacy of these two anti-mycobacterial drugs.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Rifampina/farmacologia , Rifampina/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/metabolismo , Ciprofloxacina/farmacologia , Ciprofloxacina/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo
11.
Foods ; 11(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35053966

RESUMO

In southern Italy, some artisanal farms produce mozzarella and caciocavallo cheeses by using natural whey starter (NWS), whose microbial diversity is responsible for the characteristic flavor and texture of the final product. We studied the microbial community of NWS cultures of cow's milk (NWSc) for the production of caciocavallo and buffalo's milk (NWSb) for the production of mozzarella, both from artisanal farms. Bacterial identification at species and strain level was based on an integrative strategy, combining culture-dependent (sequencing of the 16S rDNA, species/subspecies-specific Polymerase Chain Reaction (PCR) and clustering by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) and culture-independent (next-generation sequencing analysis, NGS) approaches. Results obtained with both approaches showed the occurrence of five species of lactic acid bacteria in NWSb (Lactococcus lactis subsp. lactis, Lactobacillus fermentum, Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus) and five species in NWSc (Lc. lactis subsp. lactis, Enterococcus faecium, and S. thermophilus, Lb. helveticus, and Lb. delbrueckii), with the last two found only by the NGS analysis. Moreover, RAPD profiles, performed on Lc. lactis subsp. lactis different isolates from both NWSs, showed nine strains in NWSb and seven strains in NWSc, showing a microbial diversity also at strain level. Characterization of the microbiota of natural whey starters aims to collect new starter bacteria to use for tracing microbial community during the production of artisanal cheeses, in order to preserve their quality and authenticity, and to select new Lactic Acid Bacteria (LAB) strains for the production of functional foods.

12.
Front Microbiol ; 11: 575828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343518

RESUMO

Multi-drug resistant tuberculosis (MDR-TB) represents a major health problem worldwide. Drug efflux and the activity of efflux transporters likely play important roles in the development of drug-tolerant and drug-resistant mycobacterial phenotypes. This study is focused on the action of a mycobacterial efflux pump as a mechanism of drug resistance. Previous studies demonstrated up-regulation of the TetR-like transcriptional regulator MSMEG_3765 in Mycobacterium smegmatis and its ortholog Rv1685c in Mycobacterium tuberculosis (Mtb) in acid-nitrosative stress conditions. MSMEG-3765 regulates the expression of the MSMEG_3762/63/65 operon, and of the orthologous region in Mtb (Rv1687c/86c/85c). MSMEG-3762 and Rv1687c are annotated as ATP-binding proteins, while MSMEG-3763 and Rv1686c are annotated as trans-membrane polypeptides, defining an ABC efflux pump in both M. smegmatis and Mtb. The two putative efflux systems share a high percentage of identity. To examine the role of the putative efflux system MSMEG-3762/63, we constructed and characterized a MSMEG-3763 deletion mutant in M. smegmatis (∆MSMEG_3763). By comparative analysis of wild type, knockout, and complemented strains, together with structural modeling and molecular docking bioinformatics analyses of the MSMEG-3763 trans-membrane protein, we define the protein complex MSMEG-3762/63 as an efflux pump. Moreover, we demonstrate involvement of this pump in biofilm development and in the extrusion of rifampicin and ciprofloxacin (CIP), antimicrobial drugs used in first- and second-line anti-TB therapies.

13.
Biomolecules ; 10(5)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438765

RESUMO

The protein MucR from Brucella abortus has been described as a transcriptional regulator of many virulence genes. It is a member of the Ros/MucR family comprising proteins that control the expression of genes important for the successful interaction of α-proteobacteria with their eukaryotic hosts. Despite clear evidence of the role of MucR in repressing virulence genes, no study has been carried out so far demonstrating the direct interaction of this protein with the promoter of its target gene babR encoding a LuxR-like regulator repressing virB genes. In this study, we show for the first time the ability of MucR to bind the promoter of babR in electrophoretic mobility shift assays demonstrating a direct role of MucR in repressing this gene. Furthermore, we demonstrate that MucR can bind the virB gene promoter. Analyses by RT-qPCR showed no significant differences in the expression level of virB genes in Brucella abortus CC092 lacking MucR compared to the wild-type Brucella abortus strain, indicating that MucR binding to the virB promoter has little impact on virB gene expression in B. abortus 2308. The MucR modality to bind the two promoters analyzed supports our previous hypothesis that this is a histone-like protein never found before in Brucella.


Assuntos
Proteínas de Bactérias/genética , Brucella abortus/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo
14.
Microb Cell Fact ; 8: 14, 2009 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-19220903

RESUMO

BACKGROUND: Lactic acid bacteria of the genus Lactobacillus and Bifidobacterium are one of the most important health promoting groups of the human intestinal microbiota. Their protective role within the gut consists in out competing invading pathogens for ecological niches and metabolic substrates. Among the features necessary to provide health benefits, commensal microorganisms must have the ability to adhere to human intestinal cells and consequently to colonize the gut. Studies on mechanisms mediating adhesion of lactobacilli to human intestinal cells showed that factors involved in the interaction vary mostly among different species and strains, mainly regarding interaction between bacterial adhesins and extracellular matrix or mucus proteins. We have investigated the adhesive properties of Lactobacillus plantarum, a member of the human microbiota of healthy individuals. RESULTS: We show the identification of a Lactobacillus plantarum LM3 cell surface protein (48 kDa), which specifically binds to human fibronectin (Fn), an extracellular matrix protein. By means of mass spectrometric analysis this protein was identified as the product of the L. plantarum enoA1 gene, coding the EnoA1 alfa-enolase. Surface localization of EnoA1 was proved by immune electron microscopy. In the mutant strain LM3-CC1, carrying the enoA1 null mutation, the 48 kDa adhesin was not anymore detectable neither by anti-enolase Western blot nor by Fn-overlay immunoblotting assay. Moreover, by an adhesion assay we show that LM3-CC1 cells bind to fibronectin-coated surfaces less efficiently than wild type cells, thus demonstrating the significance of the surface displaced EnoA1 protein for the L. plantarum LM3 adhesion to fibronectin. CONCLUSION: Adhesion to host tissues represents a crucial early step in the colonization process of either pathogens or commensal bacteria. We demonstrated the involvement of the L. plantarum Eno A1 alfa-enolase in Fn-binding, by studying LM3 and LM3-CC1 surface proteins. Isolation of LM3-CC1 strain was possible for the presence of expressed enoA2 gene in the L. plantarum genome, giving the possibility, for the first time to our knowledge, to quantitatively compare adhesion of wild type and mutant strain, and to assess doubtless the role of L. plantarum Eno A1 as a fibronectin binding protein.

15.
Food Chem ; 285: 111-118, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797325

RESUMO

Probiotic lactic acid bacteria (LAB) are generally employed in food industry because they contribute to nutritional value of fermented foods. Although knowledge of LAB composition is of high relevance for various industrial and biotechnological applications, the comprehensive identification of LAB species is sometimes technically challenging. Recently, MALDI-TOF MS-based methodologies for bacteria detection/identification in clinical diagnostics and agri-food proved to be an attractive strategy, complementary to traditional techniques for their sensitivity and specificity. In this study, we propose, for the first time, a novel methodology based on high resolution nano-LC-ESI-MS/MS for LAB identification at genus, species and sub-species level by using the sequence regions 33-52 and 72-82 of the S16 ribosomal protein as proteotypic peptide markers. The developed methodology was then applied to the analyses of buffalo and bovine whey starter cultures, thus assessing the applicability of the approach for the detection of LAB also in complex matrices.


Assuntos
Lactobacillales/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão , Lactobacillales/isolamento & purificação , Peptídeos/análise , Proteínas Ribossômicas/análise , Proteínas Ribossômicas/metabolismo , Alinhamento de Sequência , Proteínas do Soro do Leite/metabolismo
16.
Microb Cell Fact ; 5: 35, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17129387

RESUMO

BACKGROUND: Lactic acid bacteria (LAB) are widely used in food industry and their growth performance is important for the quality of the fermented product. During industrial processes changes in temperature may represent an environmental stress to be overcome by starters and non-starters LAB. Studies on adaptation to heat shock have shown the involvement of the chaperon system-proteins in various gram-positive bacteria. The corresponding operons, namely the dnaK and groESL operons, are controlled by a negative mechanism involving the HrcA repressor protein binding to the cis acting element CIRCE. RESULTS: We studied adaptation to heat shock in the lactic acid bacterium Lactobacillus plantarum. The LM3-2 strain, carrying a null mutation in the ccpA gene, encoding the catabolite control protein A (CcpA), showed a lower percent of survival to high temperature with respect to the LM3 wild type strain. Among proteins differentially expressed in the two strains, the GroES chaperon was more abundant in the wild type strain compared to the mutant strain under standard growth conditions. Transcriptional studies showed that class I heat shock operons were differentially expressed upon heat shock in both strains. Indeed, the dnaK and groESL operons were induced about two times more in the LM3 strain compared to the LM3-2 strain. Analysis of the regulatory region of the two operons showed the presence of cre sequences, putative binding sites for the CcpA protein. CONCLUSION: The L. plantarum dnaK and groESL operons are characterized by the presence of the cis acting sequence CIRCE in the promoter region, suggesting a negative regulation by the HrcA/CIRCE system, which is a common type of control among the class I heat shock operons of gram-positive bacteria. We found an additional system of regulation, based on a positive control exerted by the CcpA protein, which would interact with cre sequences present in the regulatory region of the dnaK and groESL operons. The absence of the CcpA protein results in a lower induction of the chaperon coding operons, with a consequent lower percent of survival of the LM3-2 mutant strain population with respect to the wild type when challenged with a heat insult.

17.
FEMS Microbiol Lett ; 208(1): 143-6, 2002 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-11934508

RESUMO

Catabolite repression of the Lactobacillus plantarum bglH gene is mediated by the catabolite control protein A (CcpA). Here we show that the binding site for the protein is a catabolite-responsive element (cre) sequence overlapping the start site of transcription. Two single and one double base substitutions in the cre sequence caused derepression of a plasmid-borne bglH-cat transcriptional fusion in L. plantarum cells grown on glucose. Analysis of the single mutations indicates that the G and C nucleotide residues in positions 2 and 13, respectively, of the 14-bp cre sequence are required for catabolite repression.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Glucosidases/genética , Lactobacillus/genética , Mutação , Proteínas Repressoras/genética , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Glucosidases/metabolismo , Lactobacillus/crescimento & desenvolvimento , Dados de Sequência Molecular , Plasmídeos , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo
18.
Microbiol Res ; 169(2-3): 121-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24054819

RESUMO

Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Fibronectinas/metabolismo , Lactobacillus plantarum/enzimologia , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Proteínas de Bactérias/genética , Parede Celular/enzimologia , Parede Celular/genética , Fibronectinas/genética , Regulação Bacteriana da Expressão Gênica , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Ligação Proteica
19.
J Microbiol ; 49(6): 950-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22203558

RESUMO

Lactobacillus plantarum is commonly used in the food industry as a starter in various fermentations, especially in vegetable fermentations, in which starch is a common substrate. This polysaccharide, which is obtained from potatoes or corn and is hydrolysed mainly to maltose and glucose by acids or enzymes, is commercially used for the production of lactate by lactic acid fermentation. In this study, we describe the regulation of malE gene expression in L. plantarum. This gene, located in a 7-gene cluster, probably organized in an operon, encodes a putative maltose/maltodextrin-binding protein. We studied the expression of malE in L. plantarum LM3 (wild type) and in LM3-2 (ccpA1), which carries a null mutation in the ccpA gene, encoding the catabolite control protein A (CcpA). In the presence of glucose, expression of the MalE protein was higher in the mutant strain as compared to that in the wild-type strain. Transcription of the malE gene was induced by maltose and regulated by a CcpA-mediated carbon catabolite repression. Further, we isolated strains carrying mutations in 2 genes, lp_0172 and lp_0173, whose deduced amino acid sequences share significant identity with MalR, a regulator of the maltose operon in several gram-positive bacteria. A double mutant exhibited glucose-insensitive malE transcription, while absence of the functional Lp_0172 open reading frame had no effect on malE expression.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Lactobacillus plantarum/metabolismo , Proteínas Ligantes de Maltose/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Lactobacillus plantarum/genética , Proteínas Ligantes de Maltose/metabolismo , Dados de Sequência Molecular , Proteínas Repressoras/genética , Fatores de Transcrição/genética
20.
Microbiology (Reading) ; 143 ( Pt 4): 1053-1058, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9141672

RESUMO

The Bacillus subtilis BofA protein is involved in regulation of pro-sigma K processing in the mother cell during the late stages of sporulation. A computer analysis of the BofA amino acid sequence indicates that it is an integral membrane protein. To determine the membrane topology of the protein, a series of gene fusions of bofA with lacZ or phoA reporter genes in Escherichia coli were analysed. A BofA topological model with two membrane-spanning segments, and with the N- and the C-terminal domains located in the region between the inner and outer membranes surrounding the forespore is presented. The analysis of different modifications of the last five amino acid residues of the BofA protein, obtained by PCR site-directed mutagenesis, suggests a possible role of the C-terminal domain in the regulation of pro-sigma K processing.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas de Membrana/química , Fosfatase Alcalina/genética , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Compartimento Celular , Óperon Lac , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/química , Esporos Bacterianos/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA