Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Genes Dev ; 35(15-16): 1093-1108, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34266887

RESUMO

Abnormal numerical and structural chromosome content is frequently found in human cancer. To test the role of aneuploidy in tumor initiation and progression, we generated mice with random aneuploidies by transient induction of polo-like kinase 4 (Plk4), a master regulator of centrosome number. Short-term chromosome instability (CIN) from transient Plk4 induction resulted in formation of aggressive T-cell lymphomas in mice with heterozygous inactivation of one p53 allele and accelerated tumor development in the absence of p53. Transient CIN increased the frequency of lymphoma-initiating cells with a specific karyotype profile, including trisomy of chromosomes 4, 5, 14, and 15 occurring early in tumorigenesis. Tumor development in mice with chronic CIN induced by an independent mechanism (through inactivation of the spindle assembly checkpoint) gradually trended toward a similar karyotypic profile, as determined by single-cell whole-genome DNA sequencing. Overall, we show how transient CIN generates cells with random aneuploidies from which ones that acquire a karyotype with specific chromosome gains are sufficient to drive cancer formation, and that distinct CIN mechanisms can lead to similar karyotypic cancer-causing outcomes.


Assuntos
Aneuploidia , Instabilidade Cromossômica , Animais , Transformação Celular Neoplásica/genética , Centrossomo , Instabilidade Cromossômica/genética , Evolução Clonal , Instabilidade Genômica/genética , Camundongos
2.
Nature ; 609(7925): 101-108, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798029

RESUMO

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing and/or sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We developed and deployed improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detected emerging variants of concern up to 14 days earlier in wastewater samples, and identified multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Humanos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Análise de Sequência de RNA , Águas Residuárias/virologia
3.
N Engl J Med ; 388(24): 2241-2252, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37256972

RESUMO

BACKGROUND: Disabling pansclerotic morphea (DPM) is a rare systemic inflammatory disorder, characterized by poor wound healing, fibrosis, cytopenias, hypogammaglobulinemia, and squamous-cell carcinoma. The cause is unknown, and mortality is high. METHODS: We evaluated four patients from three unrelated families with an autosomal dominant pattern of inheritance of DPM. Genomic sequencing independently identified three heterozygous variants in a specific region of the gene that encodes signal transducer and activator of transcription 4 (STAT4). Primary skin fibroblast and cell-line assays were used to define the functional nature of the genetic defect. We also assayed gene expression using single-cell RNA sequencing of peripheral-blood mononuclear cells to identify inflammatory pathways that may be affected in DPM and that may respond to therapy. RESULTS: Genome sequencing revealed three novel heterozygous missense gain-of-function variants in STAT4. In vitro, primary skin fibroblasts showed enhanced interleukin-6 secretion, with impaired wound healing, contraction of the collagen matrix, and matrix secretion. Inhibition of Janus kinase (JAK)-STAT signaling with ruxolitinib led to improvement in the hyperinflammatory fibroblast phenotype in vitro and resolution of inflammatory markers and clinical symptoms in treated patients, without adverse effects. Single-cell RNA sequencing revealed expression patterns consistent with an immunodysregulatory phenotype that were appropriately modified through JAK inhibition. CONCLUSIONS: Gain-of-function variants in STAT4 caused DPM in the families that we studied. The JAK inhibitor ruxolitinib attenuated the dermatologic and inflammatory phenotype in vitro and in the affected family members. (Funded by the American Academy of Allergy, Asthma, and Immunology Foundation and others.).


Assuntos
Doenças Autoimunes , Fármacos Dermatológicos , Janus Quinases , Escleroderma Sistêmico , Janus Quinases/antagonistas & inibidores , Nitrilas , Pirazóis/uso terapêutico , Pirazóis/farmacologia , Pirimidinas , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/genética , Mutação de Sentido Incorreto , Mutação com Ganho de Função , Fármacos Dermatológicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico
4.
BMC Genomics ; 25(1): 646, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943082

RESUMO

BACKGROUND: Ménière's disease (MD) is a disorder of the inner ear that causes episodic bouts of severe dizziness, roaring tinnitus, and fluctuating hearing loss. To date, no targeted therapy exists. As such, we have undertaken a large whole genome sequencing study on carefully phenotyped unilateral MD patients with the goal of gene/pathway discovery and a move towards targeted intervention. This study was a retrospective review of patients with a history of Ménière's disease. Genomic DNA, acquired from saliva samples, was purified and subjected to whole genome sequencing. RESULTS: Stringent variant calling, performed on 511 samples passing quality checks, followed by gene-based filtering by recurrence and proximity in molecular interaction networks, led to 481 high priority MD genes. These high priority genes, including MPHOSPH8, MYO18A, TRIOBP, OTOGL, TNC, and MYO6, were previously implicated in hearing loss, balance, and cochlear function, and were significantly enriched in common variant studies of hearing loss. Validation in an independent MD cohort confirmed 82 recurrent genes. Pathway analysis pointed to cell-cell adhesion, extracellular matrix, and cellular energy maintenance as key mediators of MD. Furthermore, the MD-prioritized genes were highly expressed in human inner ear hair cells and dark/vestibular cells, and were differentially expressed in a mouse model of hearing loss. CONCLUSION: By enabling the development of model systems that may lead to targeted therapies and MD screening panels, the genes and variants identified in this study will inform diagnosis and treatment of MD.


Assuntos
Hidropisia Endolinfática , Genômica , Doença de Meniere , Doença de Meniere/genética , Humanos , Hidropisia Endolinfática/genética , Animais , Camundongos , Masculino , Feminino , Estudos Retrospectivos , Sequenciamento Completo do Genoma , Pessoa de Meia-Idade , Adulto
5.
Mol Pharm ; 21(4): 1965-1976, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38516985

RESUMO

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) previously elucidated the interactions between excipients and proteins for liquid granulocyte colony stimulating factor (G-CSF) formulations, confirming predictions made using computational structure docking. More recently, solid-state HDX mass spectrometry (ssHDX-MS) was developed for proteins in the lyophilized state. Deuterium uptake in ssHDX-MS has been shown for various proteins, including monoclonal antibodies, to be highly correlated with storage stability, as measured by protein aggregation and chemical degradation. As G-CSF is known to lose activity through aggregation upon lyophilization, we applied the ssHDX-MS method with peptide mapping to four different lyophilized formulations of G-CSF to compare the impact of three excipients on local structure and exchange dynamics. HDX at 22 °C was confirmed to correlate well with the monomer content remaining after lyophilization and storage at -20 °C, with sucrose providing the greatest protection, and then phenylalanine, mannitol, and no excipient leading to progressively less protection. Storage at 45 °C led to little difference in final monomer content among the formulations, and so there was no discernible relationship with total deuterium uptake on ssHDX. Incubation at 45 °C may have led to a structural conformation and/or aggregation mechanism no longer probed by HDX at 22 °C. Such a conformational change was observed previously at 37 °C for liquid-formulated G-CSF using NMR. Peptide mapping revealed that tolerance to lyophilization and -20 °C storage was linked to increased stability in the small helix, loop AB, helix C, and loop CD. LC-MS HDX and NMR had previously linked loop AB and loop CD to the formation of a native-like state (N*) prior to aggregation in liquid formulations, suggesting a similar structural basis for G-CSF aggregation in the liquid and solid states.


Assuntos
Medição da Troca de Deutério , Fator Estimulador de Colônias de Granulócitos , Humanos , Deutério/química , Medição da Troca de Deutério/métodos , Excipientes/química , Fator Estimulador de Colônias de Granulócitos/química , Espectrometria de Massas/métodos , Proteínas/química
6.
Mol Pharm ; 19(9): 3242-3255, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35948076

RESUMO

Structure-function relationships in proteins refer to a trade-off between stability and bioactivity, molded by evolution of the molecule. Identifying which protein amino acid residues jeopardize global or local stability for the benefit of bioactivity would reveal residues pivotal to this structure-function trade-off. Here, we use 15N-1H heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy to probe the microenvironment and dynamics of residues in granulocyte colony-stimulating factor (G-CSF) through thermal perturbation. From this analysis, we identified four residues (G4, A6, T133, and Q134) that we classed as significant to global stability, given that they all experienced large environmental and dynamic changes and were closely correlated to each other in their NMR characteristics. Additionally, we observe that roughly four structural clusters are subject to localized conformational changes or partial unfolding prior to global unfolding at higher temperature. Combining NMR observables with structure relaxation methods reveals that these structural clusters concentrate around loop AB (binding site III inclusive). This loop has been previously implicated in conformational changes that result in an aggregation prone state of G-CSF. Residues H43, V48, and S63 appear to be pivotal to an opening motion of loop AB, a change that is possibly also important for function. Hence, we present here an approach to profiling residues in order to highlight their potential roles in the two vital characteristics of proteins: stability and bioactivity.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Proteínas , Fator Estimulador de Colônias de Granulócitos/química , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
7.
Ann Allergy Asthma Immunol ; 125(3): 311-318.e2, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32407947

RESUMO

BACKGROUND: Allergen immunotherapy can provide long-term benefits, including symptomatic relief and reduced disease progression, but it requires a lengthy regimen that presents barriers to patient adherence. Thus, there is a need for improved approaches to immunotherapy. Recently, several clinical trials have reported successful results from intralymphatic immunotherapy. OBJECTIVE: To evaluate the efficacy, safety, and tolerability of intralymphatic immunotherapy for allergies caused by mountain cedar pollen in a proof-of-concept study. METHODS: A total of 21 patients with allergic rhinoconjunctivitis because of mountain cedar pollen were randomized to receive 3 monthly intralymphatic injections of allergenic extract or placebo before the 2018-2019 mountain cedar pollen season. Safety was monitored during treatment to the end of the pollen season using structured and spontaneous reports. Clinical efficacy information was collected using a daily electronic diary of symptoms and allergy medication. Allergen-specific serum immunoglobulin E was assessed before treatment and at the end of the study. RESULTS: There were no serious adverse events or systemic reactions in either group. A total of 4 patients experienced mild injection-site reactions. Patients receiving intralymphatic immunotherapy experienced a significant improvement in allergy symptoms and medication use relative to patients receiving placebo (P < .001), and the active treatment group had lower average total combined scores on 20 of 27 days during the peak pollen season (P < .05). There was no significant difference among groups in changes to mean mountain cedar-specific serum immunoglobulin E levels. CONCLUSION: In this proof-of-concept trial, intralymphatic immunotherapy was well tolerated and improved the symptoms and medication use associated with allergic rhinoconjunctivitis caused by mountain cedar pollen. TRIAL REGISTRATION: This study was registered at ClinicalTrials.gov under the registration number NCT03682965 before the enrollment of the first subject.


Assuntos
Cedrus/imunologia , Rinite Alérgica Sazonal/imunologia , Rinite Alérgica Sazonal/terapia , Adulto , Alérgenos/imunologia , Antígenos de Plantas/imunologia , Dessensibilização Imunológica/métodos , Método Duplo-Cego , Feminino , Humanos , Hipersensibilidade/imunologia , Imunoglobulina E/sangue , Injeções Intralinfáticas , Masculino , Pólen/imunologia
8.
Cancer ; 125(14): 2423-2434, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30933315

RESUMO

BACKGROUND: Human papillomavirus (HPV)-associated oropharyngeal cancer is a disease clinically and biologically distinct from smoking-related head and neck squamous cell carcinoma (HNSCC). Despite its rapidly increasing incidence, the mutational landscape of HPV+ oropharyngeal squamous cell carcinoma (OPSCC) remains understudied. METHODS: This article presents the first mutational analysis of the 46 HPV+ OPSCC tumors within the newly expanded cohort of 530 HNSCC tumors from The Cancer Genome Atlas. A separate exome sequencing analysis was also performed for 46 HPV+ OPSCCs matched to their normal lymphocyte controls from the Johns Hopkins University cohort. RESULTS: There was a strikingly high 33% frequency of mutations within genes associated with chromatin regulation, including mutations in lysine methyltransferase 2C (KMT2C), lysine methyltransferase 2D (KMT2D), nuclear receptor binding SET domain protein 1 (NSD1), CREB binding protein (CREBBP), E1A-associated protein p300 (EP300), and CCCTC-binding factor (CTCF). In addition, the commonly altered genes phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) and fibroblast growth factor receptor 3 (FGFR3) showed distinct domain-specific hotspot mutations in comparison with their HPV- counterparts. PIK3CA showed a uniquely high rate of mutations within the helicase domain, and FGFR3 contained a predominance of hotspot S249C alterations that were not found in HPV- HNSCC. CONCLUSIONS: This analysis represents one of the largest studies to date of HPV+ OPSCC and lends novel insight into the genetic landscape of this biologically distinct disease, including a high rate of mutations in histone- and chromatin-modifying genes, which may offer novel therapeutic targets.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Papillomavirus Humano 16/imunologia , Mutação , Neoplasias Orofaríngeas/genética , Neoplasias Orofaríngeas/virologia , Infecções por Papillomavirus/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Adulto , Idoso , Classe I de Fosfatidilinositol 3-Quinases/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Orofaríngeas/patologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Sequenciamento do Exoma
9.
Bioinformatics ; 34(16): 2843-2845, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29659724

RESUMO

Summary: With the growing availability of population-scale whole-exome and whole-genome sequencing, demand for reproducible, scalable variant analysis has spread within genomic research communities. To address this need, we introduce the Python package Variant Analysis and Prioritization (VAPr). VAPr leverages existing annotation tools ANNOVAR and MyVariant.info with MongoDB-based flexible storage and filtering functionality. It offers biologists and bioinformatics generalists easy-to-use and scalable analysis and prioritization of genomic variants from large cohort studies. Availability and implementation: VAPr is developed in Python and is available for free use and extension under the MIT License. An install package is available on PyPi at https://pypi.python.org/pypi/VAPr, while source code and extensive documentation are on GitHub at https://github.com/ucsd-ccbb/VAPr.


Assuntos
Biologia Computacional , Exoma , Genômica , Metagenômica , Software
10.
J Immunol ; 199(9): 3158-3175, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28947543

RESUMO

The changes to the epigenetic landscape in response to Ag during CD4 T cell activation have not been well characterized. Although CD4 T cell subsets have been mapped globally for numerous epigenetic marks, little has been done to study their dynamics early after activation. We have studied changes to promoter H3K27me3 during activation of human naive and memory CD4 T cells. Our results show that these changes occur relatively early (1 d) after activation of naive and memory cells and that demethylation is the predominant change to H3K27me3 at this time point, reinforcing high expression of target genes. Additionally, inhibition of the H3K27 demethylase JMJD3 in naive CD4 T cells demonstrates how critically important molecules required for T cell differentiation, such as JAK2 and IL12RB2, are regulated by H3K27me3. Our results show that H3K27me3 is a dynamic and important epigenetic modification during CD4 T cell activation and that JMJD3-driven H3K27 demethylation is critical for CD4 T cell function.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Histonas/imunologia , Janus Quinase 2/imunologia , Histona Desmetilases com o Domínio Jumonji/imunologia , Ativação Linfocitária , Processamento de Proteína Pós-Traducional/imunologia , Receptores de Interleucina-12/imunologia , Fatores de Transcrição STAT/imunologia , Epigênese Genética/imunologia , Humanos , Metilação
11.
J Surg Orthop Adv ; 25(2): 86-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27518291

RESUMO

The purpose of this study was to determine the publication rate of manuscripts presented at the Southern Orthopaedic Association's (SOA) annual meetings. An extensive literature search was performed using Google Scholar and PubMed search engines and all accepted abstracts (posters or podium presentations) presented at an SOA annual meeting from 2005 to 2011 were evaluated. A total of 568 abstracts were presented at SOA meetings between 2005 and 2011. Of these, 234 (41%) were published in the peer-reviewed literature. The publication rate was 66% in 2005 and 28% in 2010. The average time from presentation to peer-reviewed publication was 1.6 ± 0.24 years (range, 2 years in 2006 to 1 year in 2011). The SOA publication rate was comparable with other major orthopaedic conference publication rates, yet more than half of all abstracts remain unpublished. SOA attendees should be aware that approximately 40% of all accepted presentations will go unpublished.


Assuntos
Indexação e Redação de Resumos , Ortopedia , Publicações Periódicas como Assunto , Editoração , Sociedades Médicas , Congressos como Assunto , Humanos , Revisão da Pesquisa por Pares , Estudos Retrospectivos , Estados Unidos
12.
Head Face Med ; 20(1): 24, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627712

RESUMO

OBJECTIVES: A randomized controlled clinical trial of dental implants was conducted to compare the clinical properties of a novel electrochemically deposited calcium phosphate coating to those of a common marketed surface treatment. MATERIAL AND METHODS: Forty implants of the same brand and type were placed in 20 fully edentulous participants requiring mandibular implantation. The two study groups were defined by the surface treatment of the implants. 20 implants in the control group were coated via a commercial electrochemical surface treatment that forms a mixture of brushite and hydroxyapatite, while the remaining 20 in the test group were coated with a novel electrochemical Smart Bioactive Trabecular Coating (SBTC®). A split-mouth design was employed, with each participants receiving one control implant in one mandibular side and a test implant in the other. To mitigate potential operator-handedness bias, control and test implants were randomly assigned to mandibular sides. All cases underwent digital planning, implant placement with a static surgical guide, and participants received locator-anchored full-arch dentures. The primary outcome was implant stability (measured using Osstell ISQ) assessed at insertion, loading, and then 3 months, 9 months, and 2 years post-insertion. The secondary outcome was bone level change (in millimeters) over the 2-year observation period. Oral health-related quality of life (OHRQL) was monitored using the OHIP-14 questionnaire. Complications and adverse events were recorded. RESULTS: Successful osseointegration and implant stability were achieved in all cases, allowing loading. ISQ values steadily increased throughout the observation period. While no significant differences were observed between the SBTC® and control coatings, the test group exhibited a higher ISQ gain. Bone resorption was somewhat lower in the SBTC® but not significantly so. Patients' OHRQL significantly improved after denture delivery and remained stable throughout the follow-up. No complications or adverse events were observed. CONCLUSIONS: Based on the study results, we conclude that the new surface treatment is a safe alternative to the widely used control surface, demonstrating similar osseointegrative properties and time-dependent bone level changes. Further research may explore the broader implications of these findings. TRIAL REGISTRATION: The study is registered on clinicaltrials.gov under the identifier ID: NCT06034171.


Assuntos
Implantes Dentários , Boca Edêntula , Humanos , Implantação Dentária Endóssea/métodos , Qualidade de Vida , Osseointegração , Resultado do Tratamento , Prótese Dentária Fixada por Implante/métodos , Planejamento de Prótese Dentária
13.
Cell Rep ; 43(2): 113704, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38265938

RESUMO

Leukemia-initiating cells (LICs) are regarded as the origin of leukemia relapse and therapeutic resistance. Identifying direct stemness determinants that fuel LIC self-renewal is critical for developing targeted approaches. Here, we show that the RNA-editing enzyme ADAR1 is a crucial stemness factor that promotes LIC self-renewal by attenuating aberrant double-stranded RNA (dsRNA) sensing. Elevated adenosine-to-inosine editing is a common attribute of relapsed T cell acute lymphoblastic leukemia (T-ALL) regardless of molecular subtype. Consequently, knockdown of ADAR1 severely inhibits LIC self-renewal capacity and prolongs survival in T-ALL patient-derived xenograft models. Mechanistically, ADAR1 directs hyper-editing of immunogenic dsRNA to avoid detection by the innate immune sensor melanoma differentiation-associated protein 5 (MDA5). Moreover, we uncover that the cell-intrinsic level of MDA5 dictates the dependency on the ADAR1-MDA5 axis in T-ALL. Collectively, our results show that ADAR1 functions as a self-renewal factor that limits the sensing of endogenous dsRNA. Thus, targeting ADAR1 presents an effective therapeutic strategy for eliminating T-ALL LICs.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , RNA de Cadeia Dupla , Humanos , Doença Crônica , Edição de RNA , Linfócitos T
14.
J Pers Med ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37240930

RESUMO

Introduction: There is a well-documented association between coronary artery disease (CHD) and periodontal disease (PD) mediated by common inflammatory pathways. This association, however, has not been investigated extensively in the special context of in-stent restenosis. This study aimed to investigate the periodontal status of patients undergoing percutaneous coronary intervention (PCI) for restenotic lesions. Methods and Results: We enrolled 90 patients undergoing percutaneous coronary intervention and 90 age- and gender-matched healthy controls in the present study. All subjects received a full-mouth examination by a periodontist. Plaque index, periodontal status, and tooth loss were determined. The periodontal state was significantly worse (p < 0.0001) in the PCI group, and each periodontal stage increased the odds of belonging to the PCI group. This effect of PD was independent of diabetes mellitus, another strong risk factor for CAD. The PCI group was further divided into two subgroups: PCI for restenotic lesions (n = 39) and PCI for de novo lesions (n = 51). Baseline clinical and procedural characteristics were comparable between the two PCI subgroups. A significant (p < 0.001) association was found between the PCI subgroup and the severity of periodontal disease, with the incidence of severe PD reaching 64.1%. Conclusions: Patients undergoing PCI for in-stent restenosis exhibit more severe forms of periodontal disease not only as compared to healthy controls but also as compared to patients stented for de novo lesions. The potential causality between PD and restenosis must be studied in larger prospective studies.

15.
Dent J (Basel) ; 11(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37754323

RESUMO

OBJECTIVE: This study aimed to identify the key aspects of patients' dental care experience that influenced their self-perceived satisfaction and loyalty. Also examined was the agreement between patients and dentists regarding these factors. METHODS: Questionnaires were administered to 1121 patients and 77 dentists, focusing on demographic information and 15 selected items related to the patients' last dental visit. Descriptive and linear regression analyses were conducted. RESULTS: The study included participants from 41 practices. Factors significantly influencing satisfaction and loyalty included location convenience, treatment quality, trust in dentists' decisions, visit frequency satisfaction, clear treatment explanations, dentist's interest in symptoms, patient-dental personnel attachment, and dentist's knowledge of the patient and their medical records. While overall agreement between patients and dentists was high, some areas exhibited notable disagreement. CONCLUSIONS: The findings mostly align with existing literature, underscoring the importance of communication, trust, and a personal patient-dentist relationship in promoting satisfaction and loyalty. However, they also show that local, generally not reported factors might be at play, which necessitates dentists' awareness and consideration of the local context for optimal outcomes.

16.
Res Sq ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398458

RESUMO

Leukemia initiating cells (LICs) are regarded as the origin of leukemia relapse and therapeutic resistance. Identifying direct stemness determinants that fuel LIC self-renewal is critical for developing targeted approaches to eliminate LICs and prevent relapse. Here, we show that the RNA editing enzyme ADAR1 is a crucial stemness factor that promotes LIC self-renewal by attenuating aberrant double-stranded RNA (dsRNA) sensing. Elevated adenosine-to-inosine (A-to-I) editing is a common attribute of relapsed T-ALL regardless of molecular subtypes. Consequently, knockdown of ADAR1 severely inhibits LIC self-renewal capacity and prolongs survival in T-ALL PDX models. Mechanistically, ADAR1 directs hyper-editing of immunogenic dsRNA and retains unedited nuclear dsRNA to avoid detection by the innate immune sensor MDA5. Moreover, we uncovered that the cell intrinsic level of MDA5 dictates the dependency on ADAR1-MDA5 axis in T-ALL. Collectively, our results show that ADAR1 functions as a self-renewal factor that limits the sensing of endogenous dsRNA. Thus, targeting ADAR1 presents a safe and effective therapeutic strategy for eliminating T-ALL LICs.

17.
Front Endocrinol (Lausanne) ; 14: 1279878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260148

RESUMO

Introduction: Female reproductive function depends on a choreographed sequence of hormonal secretion and action, where specific stresses such as inflammation exert profound disruptions. Specifically, acute LPS-induced inflammation inhibits gonadotropin production and secretion from the pituitary, thereby impacting the downstream production of sex hormones. These outcomes have only been observed in acute inflammatory stress and little is known about the mechanisms by which chronic inflammation affects reproduction. In this study we seek to understand the chronic effects of LPS on pituitary function and consequent luteinizing and follicle stimulating hormone secretion. Methods: A chronic inflammatory state was induced in female mice by twice weekly injections with LPS over 6 weeks. Serum gonadotropins were measured and bulk RNAseq was performed on the pituitaries from these mice, along with basic measurements of reproductive biology. Results: Surprisingly, serum luteinizing and follicle stimulating hormone was not inhibited and instead we found it was increased with repeated LPS treatments. Discussion: Analysis of bulk RNA-sequencing of murine pituitary revealed paracrine activation of TGFß pathways as a potential mechanism regulating FSH secretion in response to chronic LPS. These results provide a framework with which to begin dissecting the impacts of chronic inflammation on reproductive physiology.


Assuntos
Lipopolissacarídeos , Doenças da Hipófise , Feminino , Animais , Camundongos , Hipófise , Perfilação da Expressão Gênica , Transcriptoma , Gonadotropinas Hipofisárias , Inflamação/induzido quimicamente
18.
Cancers (Basel) ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686653

RESUMO

HPV-associated oropharynx carcinoma (HPVOPC) tumors have a relatively low mutational burden. Elucidating the relative contributions of other tumor alterations, such as DNA methylation alterations, alternative splicing events (ASE), and copy number variation (CNV), could provide a deeper understanding of carcinogenesis drivers in this disease. We applied network propagation analysis to multiple classes of tumor alterations in a discovery cohort of 46 primary HPVOPC tumors and 25 cancer-unaffected controls and validated our findings with TCGA data. We identified significant overlap between differential gene expression networks and all alteration classes, and this association was highest for methylation and lowest for CNV. Significant overlap was seen for gene clusters of G protein-coupled receptor (GPCR) pathways. HPV16-human protein interaction analysis identified an enriched cluster defined by an immune-mediated GPCR signal, including CXCR3 cytokines CXCL9, CXCL10, and CXCL11. CXCR3 was found to be expressed in primary HPVOPC, and scRNA-seq analysis demonstrated CXCR3 ligands to be highly expressed in M2 macrophages. In vivo models demonstrated decreased tumor growth with antagonism of the CXCR3 receptor in immunodeficient but not immunocompetent mice, suggesting that the CXCR3 axis can drive tumor proliferation in an autocrine fashion, but the effect is tempered by an intact immune system. In conclusion, methylation, ASE, and SNV alterations are highly associated with network gene expression changes in HPVOPC, suggesting that ASE and methylation alterations have an important role in driving the oncogenic phenotype. Network analysis identifies GPCR networks, specifically the CXCR3 chemokine axis, as modulators of tumor-immune interactions that may have proliferative effects on primary tumors as well as a role for immunosurveillance; however, CXCR3 inhibition should be used with caution, as these agents may both inhibit and stimulate tumor growth considering the competing effects of this cytokine axis. Further investigation is needed to explore opportunities for targeted therapy in this setting.

19.
Cell Rep Med ; 4(3): 100962, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36889320

RESUMO

Pediatric acute myeloid leukemia (pAML) is typified by high relapse rates and a relative paucity of somatic DNA mutations. Although seminal studies show that splicing factor mutations and mis-splicing fuel therapy-resistant leukemia stem cell (LSC) generation in adults, splicing deregulation has not been extensively studied in pAML. Herein, we describe single-cell proteogenomics analyses, transcriptome-wide analyses of FACS-purified hematopoietic stem and progenitor cells followed by differential splicing analyses, dual-fluorescence lentiviral splicing reporter assays, and the potential of a selective splicing modulator, Rebecsinib, in pAML. Using these methods, we discover transcriptomic splicing deregulation typified by differential exon usage. In addition, we discover downregulation of splicing regulator RBFOX2 and CD47 splice isoform upregulation. Importantly, splicing deregulation in pAML induces a therapeutic vulnerability to Rebecsinib in survival, self-renewal, and lentiviral splicing reporter assays. Taken together, the detection and targeting of splicing deregulation represent a potentially clinically tractable strategy for pAML therapy.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco , Adulto , Criança , Humanos , Splicing de RNA/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Isoformas de Proteínas/genética , Mutação , Fatores de Processamento de RNA/genética , Proteínas Repressoras/genética
20.
medRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34704096

RESUMO

Background: Schools are high-risk settings for SARS-CoV-2 transmission, but necessary for children's educational and social-emotional wellbeing. Previous research suggests that wastewater monitoring can detect SARS-CoV-2 infections in controlled residential settings with high levels of accuracy. However, its effective accuracy, cost, and feasibility in non-residential community settings is unknown. Methods: The objective of this study was to determine the effectiveness and accuracy of community-based passive wastewater and surface (environmental) surveillance to detect SARS-CoV-2 infection in neighborhood schools compared to weekly diagnostic (PCR) testing. We implemented an environmental surveillance system in nine elementary schools with 1700 regularly present staff and students in southern California. The system was validated from November 2020 - March 2021. Findings: In 447 data collection days across the nine sites 89 individuals tested positive for COVID-19, and SARS-CoV-2 was detected in 374 surface samples and 133 wastewater samples. Ninety-three percent of identified cases were associated with an environmental sample (95% CI: 88% - 98%); 67% were associated with a positive wastewater sample (95% CI: 57% - 77%), and 40% were associated with a positive surface sample (95% CI: 29% - 52%). The techniques we utilized allowed for near-complete genomic sequencing of wastewater and surface samples. Interpretation: Passive environmental surveillance can detect the presence of COVID-19 cases in non-residential community school settings with a high degree of accuracy. Funding: County of San Diego, Health and Human Services Agency, National Institutes of Health, National Science Foundation, Centers for Disease Control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA