Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(12): e2221048120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36920924

RESUMO

The ability to predict and understand complex molecular motions occurring over diverse timescales ranging from picoseconds to seconds and even hours in biological systems remains one of the largest challenges to chemical theory. Markov state models (MSMs), which provide a memoryless description of the transitions between different states of a biochemical system, have provided numerous important physically transparent insights into biological function. However, constructing these models often necessitates performing extremely long molecular simulations to converge the rates. Here, we show that by incorporating memory via the time-convolutionless generalized master equation (TCL-GME) one can build a theoretically transparent and physically intuitive memory-enriched model of biochemical processes with up to a three order of magnitude reduction in the simulation data required while also providing a higher temporal resolution. We derive the conditions under which the TCL-GME provides a more efficient means to capture slow dynamics than MSMs and rigorously prove when the two provide equally valid and efficient descriptions of the slow configurational dynamics. We further introduce a simple averaging procedure that enables our TCL-GME approach to quickly converge and accurately predict long-time dynamics even when parameterized with noisy reference data arising from short trajectories. We illustrate the advantages of the TCL-GME using alanine dipeptide, the human argonaute complex, and FiP35 WW domain.


Assuntos
Dipeptídeos , Simulação de Dinâmica Molecular , Humanos , Cadeias de Markov
2.
J Chem Inf Model ; 64(5): 1481-1485, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38376463

RESUMO

This letter gives results on improving protein-ligand binding affinity predictions based on molecular dynamics simulations using machine learning potentials with a hybrid neural network potential and molecular mechanics methodology (NNP/MM). We compute relative binding free energies with the Alchemical Transfer Method and validate its performance against established benchmarks and find significant enhancements compared with conventional MM force fields like GAFF2.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligantes , Termodinâmica , Proteínas/química , Ligação Proteica , Redes Neurais de Computação
3.
J Chem Inf Model ; 63(18): 5701-5708, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37694852

RESUMO

Machine learning potentials have emerged as a means to enhance the accuracy of biomolecular simulations. However, their application is constrained by the significant computational cost arising from the vast number of parameters compared with traditional molecular mechanics. To tackle this issue, we introduce an optimized implementation of the hybrid method (NNP/MM), which combines a neural network potential (NNP) and molecular mechanics (MM). This approach models a portion of the system, such as a small molecule, using NNP while employing MM for the remaining system to boost efficiency. By conducting molecular dynamics (MD) simulations on various protein-ligand complexes and metadynamics (MTD) simulations on a ligand, we showcase the capabilities of our implementation of NNP/MM. It has enabled us to increase the simulation speed by ∼5 times and achieve a combined sampling of 1 µs for each complex, marking the longest simulations ever reported for this class of simulations.


Assuntos
Simulação de Dinâmica Molecular , Redes Neurais de Computação , Ligantes , Aprendizado de Máquina
4.
J Chem Phys ; 158(9): 094112, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889969

RESUMO

The dynamics of many-body fermionic systems are important in problems ranging from catalytic reactions at electrochemical surfaces to transport through nanojunctions and offer a prime target for quantum computing applications. Here, we derive the set of conditions under which fermionic operators can be exactly replaced by bosonic operators that render the problem amenable to a large toolbox of dynamical methods while still capturing the correct dynamics of n-body operators. Importantly, our analysis offers a simple guide on how one can exploit these simple maps to calculate nonequilibrium and equilibrium single- and multi-time correlation functions essential in describing transport and spectroscopy. We use this to rigorously analyze and delineate the applicability of simple yet effective Cartesian maps that have been shown to correctly capture the correct fermionic dynamics in select models of nanoscopic transport. We illustrate our analytical results with exact simulations of the resonant level model. Our work provides new insights as to when one can leverage the simplicity of bosonic maps to simulate the dynamics of many-electron systems, especially those where an atomistic representation of nuclear interactions becomes essential.

5.
J Chem Phys ; 159(1)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37409707

RESUMO

Electron transfer at electrode interfaces to molecules in solution or at the electrode surface plays a vital role in numerous technological processes. However, treating these processes requires a unified and accurate treatment of the fermionic states of the electrode and their coupling to the molecule being oxidized or reduced in the electrochemical processes and, in turn, the way the molecular energy levels are modulated by the bosonic nuclear modes of the molecule and solvent. Here we present a physically transparent quasiclassical scheme to treat these electrochemical electron transfer processes in the presence of molecular vibrations by using an appropriately chosen mapping of the fermionic variables. We demonstrate that this approach, which is exact in the limit of non-interacting fermions in the absence of coupling to vibrations, is able to accurately capture the electron transfer dynamics from the electrode even when the process is coupled to vibrational motions in the regimes of weak coupling. This approach, thus, provides a scalable strategy to explicitly treat electron transfer from electrode interfaces in condensed-phase molecular systems.

6.
J Chem Phys ; 158(7): 074107, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36813724

RESUMO

Linear and nonlinear electronic spectra provide an important tool to probe the absorption and transfer of electronic energy. Here, we introduce a pure state Ehrenfest approach to obtain accurate linear and nonlinear spectra that is applicable to systems with large numbers of excited states and complex chemical environments. We achieve this by representing the initial conditions as sums of pure states and unfolding multi-time correlation functions into the Schrödinger picture. By doing this, we show that one can obtain significant improvements in accuracy over the previously used projected Ehrenfest approach and that these benefits are particularly pronounced in cases where the initial condition is a coherence between excited states. While such initial conditions do not arise when calculating linear electronic spectra, they play a vital role in capturing multidimensional spectroscopies. We demonstrate the performance of our method by showing that it is able to quantitatively capture the exact linear, 2D electronic spectroscopy, and pump-probe spectra for a Frenkel exciton model in slow bath regimes and is even able to reproduce the main spectral features in fast bath regimes.

7.
J Chem Phys ; 159(7)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37581418

RESUMO

The transport of excess protons and hydroxide ions in water underlies numerous important chemical and biological processes. Accurately simulating the associated transport mechanisms ideally requires utilizing ab initio molecular dynamics simulations to model the bond breaking and formation involved in proton transfer and path-integral simulations to model the nuclear quantum effects relevant to light hydrogen atoms. These requirements result in a prohibitive computational cost, especially at the time and length scales needed to converge proton transport properties. Here, we present machine-learned potentials (MLPs) that can model both excess protons and hydroxide ions at the generalized gradient approximation and hybrid density functional theory levels of accuracy and use them to perform multiple nanoseconds of both classical and path-integral proton defect simulations at a fraction of the cost of the corresponding ab initio simulations. We show that the MLPs are able to reproduce ab initio trends and converge properties such as the diffusion coefficients of both excess protons and hydroxide ions. We use our multi-nanosecond simulations, which allow us to monitor large numbers of proton transfer events, to analyze the role of hypercoordination in the transport mechanism of the hydroxide ion and provide further evidence for the asymmetry in diffusion between excess protons and hydroxide ions.

8.
Phys Rev Lett ; 129(5): 056001, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960558

RESUMO

Time-resolved scattering experiments enable imaging of materials at the molecular scale with femtosecond time resolution. However, in disordered media they provide access to just one radial dimension thus limiting the study of orientational structure and dynamics. Here we introduce a rigorous and practical theoretical framework for predicting and interpreting experiments combining optically induced anisotropy and time-resolved scattering. Using impulsive nuclear Raman and ultrafast x-ray scattering experiments of chloroform and simulations, we demonstrate that this framework can accurately predict and elucidate both the spatial and temporal features of these experiments.

9.
J Chem Phys ; 157(9): 094111, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075710

RESUMO

The third-order response lies at the heart of simulating and interpreting nonlinear spectroscopies ranging from two-dimensional infrared (2D-IR) to 2D electronic (2D-ES), and 2D sum frequency generation (2D-SFG). The extra time and frequency dimensions in these spectroscopic techniques provide access to rich information on the electronic and vibrational states present, the coupling between them, and the resulting rates at which they exchange energy that are obscured in linear spectroscopy, particularly for condensed phase systems that usually contain many overlapping features. While the exact quantum expression for the third-order response is well established, it is incompatible with the methods that are practical for calculating the atomistic dynamics of large condensed phase systems. These methods, which include both classical mechanics and quantum dynamics methods that retain quantum statistical properties while obeying the symmetries of classical dynamics, such as LSC-IVR, centroid molecular dynamics, and Ring Polymer Molecular Dynamics (RPMD), naturally provide short-time approximations to the multi-time symmetrized Kubo transformed correlation function. Here, we show how the third-order response can be formulated in terms of equilibrium symmetrized Kubo transformed correlation functions. We demonstrate the utility and accuracy of our approach by showing how it can be used to obtain the third-order response of a series of model systems using both classical dynamics and RPMD. In particular, we show that this approach captures features such as anharmonically induced vertical splittings and peak shifts while providing a physically transparent framework for understanding multidimensional spectroscopies.


Assuntos
Simulação de Dinâmica Molecular , Vibração , Análise Espectral
10.
J Chem Phys ; 155(7): 074801, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418919

RESUMO

Machine-learning potentials (MLPs) trained on data from quantum-mechanics based first-principles methods can approach the accuracy of the reference method at a fraction of the computational cost. To facilitate efficient MLP-based molecular dynamics and Monte Carlo simulations, an integration of the MLPs with sampling software is needed. Here, we develop two interfaces that link the atomic energy network (ænet) MLP package with the popular sampling packages TINKER and LAMMPS. The three packages, ænet, TINKER, and LAMMPS, are free and open-source software that enable, in combination, accurate simulations of large and complex systems with low computational cost that scales linearly with the number of atoms. Scaling tests show that the parallel efficiency of the ænet-TINKER interface is nearly optimal but is limited to shared-memory systems. The ænet-LAMMPS interface achieves excellent parallel efficiency on highly parallel distributed-memory systems and benefits from the highly optimized neighbor list implemented in LAMMPS. We demonstrate the utility of the two MLP interfaces for two relevant example applications: the investigation of diffusion phenomena in liquid water and the equilibration of nanostructured amorphous battery materials.

11.
Phys Chem Chem Phys ; 22(19): 10490-10499, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31942581

RESUMO

At room temperature, the quantum contribution to the kinetic energy of a water molecule exceeds the classical contribution by an order of magnitude. The quantum kinetic energy (QKE) of a water molecule is modulated by its local chemical environment and leads to uneven partitioning of isotopes between different phases in thermal equilibrium, which would not occur if the nuclei behaved classically. In this work, we use ab initio path integral simulations to show that QKEs of the water molecules and the equilibrium isotope fractionation ratios of the oxygen and hydrogen isotopes are sensitive probes of the hydrogen bonding structures in aqueous ionic solutions. In particular, we demonstrate how the QKE of water molecules in path integral simulations can be decomposed into translational, rotational and vibrational degrees of freedom, and use them to determine the impact of solvation on different molecular motions. By analyzing the QKEs and isotope fractionation ratios, we show how the addition of the Na+, Cl- and HPO42- ions perturbs the competition between quantum effects in liquid water and impacts their local solvation structures.

12.
J Chem Phys ; 153(24): 244111, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380087

RESUMO

Excited state electron and hole transfer underpin fundamental steps in processes such as exciton dissociation at photovoltaic heterojunctions, photoinduced charge transfer at electrodes, and electron transfer in photosynthetic reaction centers. Diabatic states corresponding to charge or excitation localized species, such as locally excited and charge transfer states, provide a physically intuitive framework to simulate and understand these processes. However, obtaining accurate diabatic states and their couplings from adiabatic electronic states generally leads to inaccurate results when combined with low-tier electronic structure methods, such as time-dependent density functional theory, and exorbitant computational cost when combined with high-level wavefunction-based methods. Here, we introduce a density functional theory (DFT)-based diabatization scheme that directly constructs the diabatic states using absolutely localized molecular orbitals (ALMOs), which we denote as Δ-ALMO(MSDFT2). We demonstrate that our method, which combines ALMO calculations with the ΔSCF technique to construct electronically excited diabatic states and obtains their couplings with charge-transfer states using our MSDFT2 scheme, gives accurate results for excited state electron and hole transfer in both charged and uncharged systems that underlie DNA repair, charge separation in donor-acceptor dyads, chromophore-to-solvent electron transfer, and singlet fission. This framework for the accurate and efficient construction of excited state diabats and evaluation of their couplings directly from DFT thus offers a route to simulate and elucidate photoinduced electron and hole transfer in large disordered systems, such as those encountered in the condensed phase.

13.
J Chem Phys ; 153(1): 014105, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640825

RESUMO

Biomolecular dynamics play an important role in numerous biological processes. Markov State Models (MSMs) provide a powerful approach to study these dynamic processes by predicting long time scale dynamics based on many short molecular dynamics (MD) simulations. In an MSM, protein dynamics are modeled as a kinetic process consisting of a series of Markovian transitions between different conformational states at discrete time intervals (called "lag time"). To achieve this, a master equation must be constructed with a sufficiently long lag time to allow interstate transitions to become truly Markovian. This imposes a major challenge for MSM studies of proteins since the lag time is bound by the length of relatively short MD simulations available to estimate the frequency of transitions. Here, we show how one can employ the generalized master equation formalism to obtain an exact description of protein conformational dynamics both at short and long time scales without the time resolution restrictions imposed by the MSM lag time. Using a simple kinetic model, alanine dipeptide, and WW domain, we demonstrate that it is possible to construct these quasi-Markov State Models (qMSMs) using MD simulations that are 5-10 times shorter than those required by MSMs. These qMSMs only contain a handful of metastable states and, thus, can greatly facilitate the interpretation of mechanisms associated with protein dynamics. A qMSM opens the door to the study of conformational changes of complex biomolecules where a Markovian model with a few states is often difficult to construct due to the limited length of available MD simulations.


Assuntos
Dipeptídeos/química , Proteínas/química , Cinética , Cadeias de Markov , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos
14.
J Chem Phys ; 151(16): 164114, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675855

RESUMO

Diabatic states and the couplings between them are important for quantifying, elucidating, and predicting the rates and mechanisms of many chemical and biochemical processes. Here, we propose and investigate approaches to accurately compute diabatic couplings from density functional theory (DFT) using absolutely localized molecular orbitals (ALMOs). ALMOs provide an appealing approach to generate variationally optimized diabatic states and obtain their associated forces, which allows for the relaxation of the donor and acceptor orbitals in a way that is internally consistent in how the method treats both the donor and acceptor states. Here, we show that one can obtain more accurate electronic couplings between ALMO-based diabats by employing the symmetrized transition density matrix to evaluate the exchange-correlation contribution. We demonstrate that this approach yields accurate results in comparison to other commonly used DFT-based diabatization methods across a wide array of electron and hole transfer processes occurring in systems ranging from conjugated organic molecules, such as thiophene and pentacene, to DNA base pairs. We also show that this approach yields accurate diabatic couplings even when combined with lower tiers of the DFT hierarchy, opening the door to combining it with quantum dynamics approaches to provide an ab initio treatment of nonadiabatic processes in the condensed phase.

15.
J Chem Phys ; 150(24): 244109, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255061

RESUMO

Methods derived from the generalized quantum master equation (GQME) framework have provided the basis for elucidating energy and charge transfer in systems ranging from molecular solids to photosynthetic complexes. Recently, the nonperturbative combination of the GQME with quantum-classical methods has resulted in approaches whose accuracy and efficiency exceed those of the original quantum-classical schemes while offering significant accuracy improvements over perturbative expansions of the GQME. Here, we show that, while the non-Markovian memory kernel required to propagate the GQME scales quartically with the number of subsystem states, the number of trajectories required scales at most quadratically when using quantum-classical methods to construct the kernel. We then present an algorithm that allows further acceleration of the quantum-classical GQME by providing a way to selectively sample the kernel matrix elements that are most important to the process of interest. We demonstrate the utility of these advances by applying the combination of Ehrenfest mean field theory with the GQME (MF-GQME) to models of the Fenna-Matthews-Olson (FMO) complex and the light harvesting complex II (LHCII), with 7 and 14 states, respectively. This allows us to show that the MF-GQME is able to accurately capture all the relevant dynamical time scales in LHCII: the initial nonequilibrium population transfer on the femtosecond time scale, the steady state-type trapping on the picosecond time scale, and the long time population relaxation. Remarkably, all of these physical effects spanning tens of picoseconds can be encoded in a memory kernel that decays only after ∼65 fs.

16.
J Chem Phys ; 151(7): 074111, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438704

RESUMO

Simulating optical spectra in the condensed phase remains a challenge for theory due to the need to capture spectral signatures arising from anharmonicity and dynamical effects, such as vibronic progressions and asymmetry. As such, numerous simulation methods have been developed that invoke different approximations and vary in their ability to capture different physical regimes. Here, we use several models of chromophores in the condensed phase and ab initio molecular dynamics simulations to rigorously assess the applicability of methods to simulate optical absorption spectra. Specifically, we focus on the ensemble scheme, which can address anharmonic potential energy surfaces but relies on the applicability of extreme nuclear-electronic time scale separation; the Franck-Condon method, which includes dynamical effects but generally only at the harmonic level; and the recently introduced ensemble zero-temperature Franck-Condon approach, which straddles these limits. We also devote particular attention to the performance of methods derived from a cumulant expansion of the energy gap fluctuations and test the ability to approximate the requisite time correlation functions using classical dynamics with quantum correction factors. These results provide insights as to when these methods are applicable and able to capture the features of condensed phase spectra qualitatively and, in some cases, quantitatively across a range of regimes.

17.
Proc Natl Acad Sci U S A ; 113(18): 4929-34, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27044113

RESUMO

Functionalized self-assembled monolayers (SAMs) are the focus of ongoing investigations because they can be chemically tuned to control their structure and dynamics for a wide variety of applications, including electrochemistry, catalysis, and as models of biological interfaces. Here we combine reflection 2D infrared vibrational echo spectroscopy (R-2D IR) and molecular dynamics simulations to determine the relationship between the structures of functionalized alkanethiol SAMs on gold surfaces and their underlying molecular motions on timescales of tens to hundreds of picoseconds. We find that at higher head group density, the monolayers have more disorder in the alkyl chain packing and faster dynamics. The dynamics of alkanethiol SAMs on gold are much slower than the dynamics of alkylsiloxane SAMs on silica. Using the simulations, we assess how the different molecular motions of the alkyl chain monolayers give rise to the dynamics observed in the experiments.

18.
Chem Rev ; 116(13): 7529-50, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27049513

RESUMO

Nuclear quantum effects influence the structure and dynamics of hydrogen-bonded systems, such as water, which impacts their observed properties with widely varying magnitudes. This review highlights the recent significant developments in the experiment, theory, and simulation of nuclear quantum effects in water. Novel experimental techniques, such as deep inelastic neutron scattering, now provide a detailed view of the role of nuclear quantum effects in water's properties. These have been combined with theoretical developments such as the introduction of the principle of competing quantum effects that allows the subtle interplay of water's quantum effects and their manifestation in experimental observables to be explained. We discuss how this principle has recently been used to explain the apparent dichotomy in water's isotope effects, which can range from very large to almost nonexistent depending on the property and conditions. We then review the latest major developments in simulation algorithms and theory that have enabled the efficient inclusion of nuclear quantum effects in molecular simulations, permitting their combination with on-the-fly evaluation of the potential energy surface using electronic structure theory. Finally, we identify current challenges and future opportunities in this area of research.

19.
J Chem Phys ; 148(22): 222833, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29907063

RESUMO

Acid solutions exhibit a variety of complex structural and dynamical features arising from the presence of multiple interacting reactive proton defects and counterions. However, disentangling the transient structural motifs of proton defects in the water hydrogen bond network and the mechanisms for their interconversion remains a formidable challenge. Here, we use simulations treating the quantum nature of both the electrons and nuclei to show how the experimentally observed spectroscopic features and relaxation time scales can be elucidated using a physically transparent coordinate that encodes the overall asymmetry of the solvation environment of the proton defect. We demonstrate that this coordinate can be used both to discriminate the extremities of the features observed in the linear vibrational spectrum and to explain the molecular motions that give rise to the interconversion time scales observed in recent nonlinear experiments. This analysis provides a unified condensed-phase picture of the proton structure and dynamics that, at its extrema, encompasses proton sharing and spectroscopic features resembling the limiting Eigen [H3O(H2O)3]+ and Zundel [H(H2O)2]+ gas-phase structures, while also describing the rich variety of interconverting environments in the liquid phase.

20.
J Chem Phys ; 149(2): 024107, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30007372

RESUMO

Many physical phenomena must be accounted for to accurately model solution-phase optical spectral line shapes, from the sampling of chromophore-solvent configurations to the electronic-vibrational transitions leading to vibronic fine structure. Here we thoroughly explore the role of nuclear quantum effects, direct and indirect solvent effects, and vibronic effects in the computation of the optical spectrum of the aqueously solvated anionic chromophores of green fluorescent protein and photoactive yellow protein. By analyzing the chromophore and solvent configurations, the distributions of vertical excitation energies, the absorption spectra computed within the ensemble approach, and the absorption spectra computed within the ensemble plus zero-temperature Franck-Condon approach, we show how solvent, nuclear quantum effects, and vibronic transitions alter the optical absorption spectra. We find that including nuclear quantum effects in the sampling of chromophore-solvent configurations using ab initio path integral molecular dynamics simulations leads to improved spectral shapes through three mechanisms. The three mechanisms that lead to line shape broadening and a better description of the high-energy tail are softening of heavy atom bonds in the chromophore that couple to the optically bright state, widening the distribution of vertical excitation energies from more diverse solvation environments, and redistributing spectral weight from the 0-0 vibronic transition to higher energy vibronic transitions when computing the Franck-Condon spectrum in a frozen solvent pocket. The absorption spectra computed using the combined ensemble plus zero-temperature Franck-Condon approach yield significant improvements in spectral shape and width compared to the spectra computed with the ensemble approach. Using the combined approach with configurations sampled from path integral molecular dynamics trajectories presents a significant step forward in accurately modeling the absorption spectra of aqueously solvated chromophores.


Assuntos
Proteínas de Bactérias/química , Ácidos Cumáricos/química , Proteínas de Fluorescência Verde/química , Imidazolidinas/química , Fotorreceptores Microbianos/química , Solventes/química , Água/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Teoria Quântica , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA