Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Immunol ; 382: 104633, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36347161

RESUMO

Loss of oral tolerance (OT) to food antigens results in food allergies. One component of achieving OT is the symbiotic microorganisms living in the gut (microbiota). The composition of the microbiota can drive either pro-tolerogenic or pro-inflammatory responses against dietary antigens though interactions with the local immune cells within the gut. Products from bacterial fermentation, such as butyrate, are one of the main communication molecules involved in this interaction, however, this is released by a subset of bacterial species. Thus, strategies to specifically expand these bacteria with protolerogenic properties have been explored to complement oral immunotherapy in food allergy. These approaches either provide digestible biomolecules to induce beneficial bacteria species (prebiotics) or the direct administration of live bacteria species (probiotics). While this combined therapy has shown positive outcomes in clinical trials for cow's milk allergy, more research is needed to determine if this therapy can be extended to other food allergens.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Microbiota , Hipersensibilidade a Leite , Probióticos , Bovinos , Animais , Feminino , Hipersensibilidade Alimentar/terapia , Hipersensibilidade a Leite/microbiologia , Probióticos/uso terapêutico , Bactérias
2.
Blood ; 133(5): 407-414, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30559260

RESUMO

In contrast to other diverse therapies for the X-linked bleeding disorder hemophilia that are currently in clinical development, gene therapy holds the promise of a lasting cure with a single drug administration. Near-to-complete correction of hemophilia A (factor VIII deficiency) and hemophilia B (factor IX deficiency) have now been achieved in patients by hepatic in vivo gene transfer. Adeno-associated viral vectors with different viral capsids that have been engineered to express high-level, and in some cases hyperactive, coagulation factors were employed. Patient data support that sustained endogenous production of clotting factor as a result of gene therapy eliminates the need for infusion of coagulation factors (or alternative drugs that promote coagulation), and may therefore ultimately also reduce treatment costs. However, mild liver toxicities have been observed in some patients receiving high vector doses. In some but not all instances, the toxicities correlated with a T-cell response directed against the viral capsid, prompting use of immune suppression. In addition, not all patients can be treated because of preexisting immunity to viral capsids. Nonetheless, studies in animal models of hemophilia suggest that the approach can also be used for immune tolerance induction to prevent or eliminate inhibitory antibodies against coagulation factors. These can form in traditional protein replacement therapy and represent a major complication of treatment. The current review provides a summary and update on advances in clinical gene therapies for hemophilia and its continued development.


Assuntos
Terapia Genética/métodos , Hemofilia A/terapia , Hemofilia B/terapia , Animais , Fatores de Coagulação Sanguínea/genética , Dependovirus/genética , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Hemofilia A/genética , Hemofilia B/genética , Humanos
3.
Mol Ther ; 28(3): 758-770, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31780366

RESUMO

Adeno-associated virus (AAV) vectors are widely used in clinical gene therapy to correct genetic disease by in vivo gene transfer. Although the vectors are useful, in part because of their limited immunogenicity, immune responses directed at vector components have complicated applications in humans. These include, for instance, innate immune sensing of vector components by plasmacytoid dendritic cells (pDCs), which sense the vector DNA genome via Toll-like receptor 9. Adaptive immune responses employ antigen presentation by conventional dendritic cells (cDCs), which leads to cross-priming of capsid-specific CD8+ T cells. In this study, we sought to determine the mechanisms that promote licensing of cDCs, which is requisite for CD8+ T cell activation. Blockage of type 1 interferon (T1 IFN) signaling by monoclonal antibody therapy prevented cross-priming. Furthermore, experiments in cell-type-restricted knockout mice showed a specific requirement for the receptor for T1 IFN (IFNaR) in cDCs. In contrast, natural killer (NK) cells are not needed, indicating a direct rather than indirect effect of T1 IFN on cDCs. In addition, co-stimulation by CD4+ T cells via CD40-CD40L was required for cross-priming, and blockage of co-stimulation but not of T1 IFN additionally reduced antibody formation against capsid. These mechanistic insights inform the development of targeted immune interventions.


Assuntos
Capsídeo/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Proteínas do Capsídeo/imunologia , Dependovirus/imunologia , Deleção de Genes , Terapia Genética/efeitos adversos , Vetores Genéticos/efeitos adversos , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Modelos Biológicos , Receptor de Interferon alfa e beta/genética , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
4.
Cell Immunol ; 342: 103728, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-29576315

RESUMO

Immune tolerance is a vital component of immunity, as persistent activation of immune cells causes significant tissue damage and loss of tolerance leads to autoimmunity. Likewise, unwanted immune responses can occur in inherited disorders, such as hemophilia and Pompe disease, in which patients lack any expression of protein, during treatment with enzyme replacement therapy, or gene therapy. While the liver has long been known as being tolerogenic, it was only recently appreciated in the last decade that liver directed adeno-associated virus (AAV) gene therapy can induce systemic tolerance to a transgene. In this review, we look at the mechanisms behind liver induced tolerance, discuss different factors influencing successful tolerance induction with AAV, and applications where AAV mediated tolerance may be helpful.


Assuntos
Dependovirus/imunologia , Vetores Genéticos/imunologia , Tolerância Imunológica , Fígado/imunologia , Transgenes/imunologia , Doenças Autoimunes/terapia , Células Dendríticas/imunologia , Dependovirus/genética , Terapia Genética , Humanos , Linfócitos T Reguladores/imunologia
6.
Mol Ther ; 26(1): 173-183, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28943274

RESUMO

The devastating neurodegenerative disease multiple sclerosis (MS) could substantially benefit from an adeno-associated virus (AAV) immunotherapy designed to restore a robust and durable antigen-specific tolerance. However, developing a sufficiently potent and lasting immune-regulatory therapy that can intervene in ongoing disease is a major challenge and has thus been elusive. We addressed this problem by developing a highly effective and robust tolerance-inducing in vivo gene therapy. Using a pre-clinical animal model, we designed a liver-targeting gene transfer vector that expresses full-length myelin oligodendrocyte glycoprotein (MOG) in hepatocytes. We show that by harnessing the tolerogenic nature of the liver, this powerful gene immunotherapy restores immune tolerance by inducing functional MOG-specific regulatory T cells (Tregs) in vivo, independent of major histocompatibility complex (MHC) restrictions. We demonstrate that mice treated prophylactically are protected from developing disease and neurological deficits. More importantly, we demonstrate that when given to mice with preexisting disease, ranging from mild neurological deficits to severe paralysis, the gene immunotherapy abrogated CNS inflammation and significantly reversed clinical symptoms of disease. This specialized approach for inducing antigen-specific immune tolerance has significant therapeutic potential for treating MS and other autoimmune disorders.


Assuntos
Epitopos de Linfócito T/imunologia , Terapia Genética , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Autoimunidade , Biomarcadores , Dependovirus/genética , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Terapia Genética/métodos , Vetores Genéticos/genética , Hepatócitos/imunologia , Hepatócitos/metabolismo , Tolerância Imunológica , Fígado/metabolismo , Camundongos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia , Medula Espinal/metabolismo , Medula Espinal/patologia
7.
J Transl Med ; 15(1): 94, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460646

RESUMO

BACKGROUND: Adeno-associated virus (AAV) gene therapy vectors have shown the best outcomes in human clinical studies for the treatment of genetic diseases such as hemophilia. However, these pivotal investigations have also identified several challenges. For example, high vector doses are often used for hepatic gene transfer, and cytotoxic T lymphocyte responses against viral capsid may occur. Therefore, achieving therapy at reduced vector doses and other strategies to reduce capsid antigen presentation are desirable. METHODS: We tested several engineered AAV capsids for factor IX (FIX) expression for the treatment of hemophilia B by hepatic gene transfer. These capsids lack potential phosphorylation or ubiquitination sites, or had been generated through molecular evolution. RESULTS: AAV2 capsids lacking either a single lysine residue or 3 tyrosine residues directed substantially higher coagulation FIX expression in mice compared to wild-type sequence or other mutations. In hemophilia B dogs, however, expression from the tyrosine-mutant vector was merely comparable to historical data on AAV2. Evolved AAV2-LiC capsid was highly efficient in hemophilia B mice but lacked efficacy in a hemophilia B dog. CONCLUSIONS: Several alternative strategies for capsid modification improve the in vivo performance of AAV vectors in hepatic gene transfer for correction of hemophilia. However, capsid optimization solely in mouse liver may not predict efficacy in other species and thus is of limited translational utility.


Assuntos
Capsídeo/metabolismo , Dependovirus/genética , Fator IX/genética , Técnicas de Transferência de Genes , Engenharia Genética , Animais , Cães , Vetores Genéticos/metabolismo , Hemofilia B/genética , Hepatócitos/metabolismo , Fígado/metabolismo , Lisina/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Animais , Mutação/genética , Transdução Genética , Tirosina/genética
8.
Blood ; 125(19): 2937-47, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25833958

RESUMO

CD4(+)CD25(+)FoxP3(+) regulatory T cells (Treg) are critical elements for maintaining immune tolerance, for instance to exogenous antigens that are introduced during therapeutic interventions such as cell/organ transplant or gene/protein replacement therapy. Coadministration of antigen with rapamycin simultaneously promotes deletion of conventional CD4(+) T cells and induction of Treg. Here, we report that the cytokine FMS-like receptor tyrosine kinase ligand (Flt3L) enhances the in vivo effect of rapamycin. This occurs via selective expansion of plasmacytoid dendritic cells (pDCs), which further augments the number of Treg. Whereas in conventional DCs, rapamycin effectively blocks mammalian target of rapamycin (mTOR) 1 signaling induced by Flt3L, increased mTOR1 activity renders pDCs more resistant to inhibition by rapamycin. Consequently, Flt3L and rapamycin synergistically promote induction of antigen-specific Treg via selective expansion of pDCs. This concept is supported by the finding that Treg induction is abrogated upon pDC depletion. The combination with pDCs and rapamycin is requisite for Flt3L/antigen-induced Treg induction because Flt3L/antigen by itself fails to induce Treg. As co-administering Flt3L, rapamycin, and antigen blocked CD8(+) T-cell and antibody responses in models of gene and protein therapy, we conclude that the differential effect of rapamycin on DC subsets can be exploited for improved tolerance induction.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Proteínas de Membrana/metabolismo , Sirolimo/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Citocinas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Sinergismo Farmacológico , Citometria de Fluxo , Humanos , Tolerância Imunológica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Transdução de Sinais , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Serina-Treonina Quinases TOR/metabolismo
9.
Blood ; 123(20): 3068-9, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24832942

RESUMO

In this issue of Blood, Nair et al report on a computationally derived hepatocyte-specific cis-regulatory module (HS-CRM8) to accomplish high tissue-specific expression in gene therapy for hemophilia. When HS-CRM8 is introduced upstream of a minimal liver-specific promoter in an adenoassociated virus (AAV) that expresses a codon-optimized hyperactive human factor IX (FIX) mutant (FIX Padua), it provides a >1 log increase in systemic FIX protein levels and supraphysiological activity over a range of vector doses.


Assuntos
Fator IX/genética , Vetores Genéticos/uso terapêutico , Hemofilia B/terapia , Fígado/metabolismo , Elementos Reguladores de Transcrição , Animais , Humanos
11.
Blood ; 121(12): 2224-33, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23325831

RESUMO

Recent clinical trials have shown that evasion of CD8(+) T-cell responses against viral capsid is critical for successful liver-directed gene therapy with adeno-associated viral (AAV) vectors for hemophilia. Preclinical models to test whether use of alternate serotypes or capsid variants could avoid this deleterious response have been lacking. Here, the ability of CD8(+) T cells ("cap-CD8," specific for a capsid epitope presented by human B*0702 or murine H2-L(d) molecules) to target AAV-infected hepatocytes was investigated. In a murine model based on adoptive transfer of ex vivo expanded cap-CD8, AAV2-transduced livers showed CD8(+) T-cell infiltrates, transaminitis, significant reduction in factor IX transgene expression, and loss of transduced hepatocytes. AAV8 gene transfer resulted in prolonged susceptibility to cap-CD8, consistent with recent clinical findings. In contrast, using an AAV2(Y-F) mutant capsid, which is known to be less degraded by proteasomes, preserved transgene expression and largely avoided hepatotoxicity. In vitro assays confirmed reduced major histocompatibility complex class I presentation of this capsid and killing of human or murine hepatocytes compared with AAV2. In conclusion, AAV capsids can be engineered to substantially reduce the risk of destruction by cytotoxic T lymphocytes, whereas use of alternative serotypes per se does not circumvent this obstacle.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas do Capsídeo/imunologia , Dependovirus/fisiologia , Terapia Genética/métodos , Vetores Genéticos/fisiologia , Hepatócitos/imunologia , Transferência Adotiva/métodos , Animais , Linfócitos T CD8-Positivos/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Dependovirus/genética , Dependovirus/imunologia , Dependovirus/metabolismo , Engenharia Genética , Vetores Genéticos/genética , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Especificidade do Receptor de Antígeno de Linfócitos T/genética , Transdução Genética
12.
Mol Ther ; 22(11): 1900-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25048217

RESUMO

Methodologies to improve existing adeno-associated virus (AAV) vectors for gene therapy include either rational approaches or directed evolution to derive capsid variants characterized by superior transduction efficiencies in targeted tissues. Here, we integrated both approaches in one unified design strategy of "virtual family shuffling" to derive a combinatorial capsid library whereby only variable regions on the surface of the capsid are modified. Individual sublibraries were first assembled in order to preselect compatible amino acid residues within restricted surface-exposed regions to minimize the generation of dead-end variants. Subsequently, the successful families were interbred to derive a combined library of ~8 × 10(5) complexity. Next-generation sequencing of the packaged viral DNA revealed capsid surface areas susceptible to directed evolution, thus providing guidance for future designs. We demonstrated the utility of the library by deriving an AAV2-based vector characterized by a 20-fold higher transduction efficiency in murine liver, now equivalent to that of AAV8.


Assuntos
Proteínas do Capsídeo/genética , DNA Viral/análise , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Fígado/virologia , Sequência de Aminoácidos , Aminoácidos , Animais , Biblioteca Gênica , Terapia Genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Análise de Sequência de DNA , Transdução Genética
13.
Hum Gene Ther ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38251650

RESUMO

Adeno-associated virus (AAV) vectors represent a novel tool for the delivery of genetic therapeutics and enable the treatment of a wide range of diseases. Success of this new modality is challenged, however, by cases of immune-related toxicities that complicate the clinical management of patients and potentially limit the therapeutic efficacy of AAV gene therapy. While significant progress has been made to manage immune-related liver enzyme elevations following systemic AAV delivery in humans, recent clinical trials utilizing high vector doses have highlighted a new challenge to AAV gene transfer-activation of the complement system. While current in vitro models implicate AAV-specific antibodies in the initiation of the classical complement pathway, evidence from in vivo pre-clinical and clinical studies suggests that the alternative pathway also contributes to complement activation. A convergence of AAV-specific, environmental, and patient-specific factors shaping complement responses likely contributes to differential outcomes seen in clinical trials, from priming of the adaptive immune system to serious adverse events such as hepatotoxicity and thrombotic microangiopathy. Research focused on the interplay of patient-specific and AAV-related factors driving complement activation is needed to understand and identify critical components in the complement cascade to target and devise strategies to mitigate vector-related immune responses.

14.
Mol Ther Methods Clin Dev ; 32(1): 101216, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38440160

RESUMO

Adeno-associated virus (AAV) vectors are used for correcting multiple genetic disorders. Although the goal is to achieve lifelong correction with a single vector administration, the ability to redose would enable the extension of therapy in cases in which initial gene transfer is insufficient to achieve a lasting cure, episomal vector forms are lost in growing organs of pediatric patients, or transgene expression is diminished over time. However, AAV typically induces potent and long-lasting neutralizing antibodies (NAbs) against capsid that prevents re-administration. To prevent NAb formation in hepatic AAV8 gene transfer, we developed a transient B cell-targeting protocol using a combination of monoclonal Ab therapy against CD20 (for B cell depletion) and BAFF (to slow B cell repopulation). Initiation of immunosuppression before (rather than at the time of) vector administration and prolonged anti-BAFF treatment prevented immune responses against the transgene product and abrogated prolonged IgM formation. As a result, vector re-administration after immune reconstitution was highly effective. Interestingly, re-administration before the immune system had fully recovered achieved further elevated levels of transgene expression. Finally, this immunosuppression protocol reduced Ig-mediated AAV uptake by immune cell types with implications to reduce the risk of immunotoxicities in human gene therapy with AAV.

15.
Blood ; 117(24): 6459-68, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21474674

RESUMO

Although adeno-associated viral (AAV) vectors have been successfully used in hepatic gene transfer for treatment of hemophilia and other diseases in animals, adaptive immune responses blocked long-term transgene expression in patients on administration of single-stranded AAV serotype-2 vector. More efficient vectors have been developed using alternate capsids and self-complimentary (sc) genomes. This study investigated their effects on the innate immune profile on hepatic gene transfer to mice. A mild and transient up-regulation of myeloid differentiation primary response gene (88), TLR9, TNF-α, monocyte chemotactic protein-1, IFN-γ inducible protein-10, and IFN-α/ß expression in the liver was found after single-stranded AAV vector administration, regardless of the capsid sequence. In contrast, scAAV vectors induced higher increases of these transcripts, upregulated additional proinflammatory genes, and increased circulating IL-6. Neutrophil, macrophage, and natural killer cell liver infiltrates were substantially higher on injection of scAAV. Some but not all of these responses were Kupffer cell dependent. Independent of the capsid or expression cassette, scAAV vectors induced dose-dependent innate responses by signaling through TLR9. Increased innate responses to scAAV correlated with stronger adaptive immune responses against capsid (but not against the transgene product). However, these could be blunted by transient inhibition of TLR9.


Assuntos
Dependovirus/genética , Vetores Genéticos/farmacologia , Genoma Viral/fisiologia , Imunidade Inata/efeitos dos fármacos , Fígado/imunologia , Receptor Toll-Like 9/fisiologia , Animais , Dependovirus/imunologia , Dependovirus/fisiologia , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Vetores Genéticos/fisiologia , Genoma Viral/imunologia , Imunidade Inata/genética , Imunidade Inata/fisiologia , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Fígado/metabolismo , Fígado/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Transdução Genética , Transgenes/imunologia , Transgenes/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Regulação para Cima/imunologia
16.
Mol Ther Methods Clin Dev ; 26: 309-322, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35990748

RESUMO

Immunotherapies for patients with food allergy have shown some success in limiting allergic responses. However, these approaches require lengthy protocols with repeated allergen dosing and patients can relapse following discontinuation of treatment. The purpose of this study was to test if a single dose of an adeno-associated virus (AAV) vector can safely prevent and treat egg allergy in a mouse model. AAV vectors expressing ovalbumin (OVA) under an ubiquitous or liver-specific promoter were injected prior to or after epicutaneous sensitization with OVA. Mice treated with either AAV8-OVA vector were completely protected from allergy sensitization. These animals had a significant reduction in anaphylaxis mediated by a reduction in OVA-specific IgE titers. In mice with established OVA allergy, allergic responses were mitigated only in mice treated with an AAV8-OVA vector expressing OVA from an ubiquitous promoter. In conclusion, an AAV vector with a liver-specific promoter was more effective for allergy prevention, but higher OVA levels were necessary for reducing symptoms in preexisting allergy. Overall, our AAV gene immunotherapy resulted in an expansion of OVA-specific FoxP3+ CD4+ T cells, an increase in the regulatory cytokine IL-10, and a reduction in the IgE promoting cytokine IL-13.

17.
Mol Ther ; 18(12): 2048-56, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20736929

RESUMO

Elimination of specific surface-exposed single tyrosine (Y) residues substantially improves hepatic gene transfer with adeno-associated virus type 2 (AAV2) vectors. Here, combinations of mutations in the seven potentially relevant Y residues were evaluated for further augmentation of transduction efficiency. These mutant capsids packaged viral genomes to similar titers and retained infectivity. A triple-mutant (Y444+500+730F) vector consistently had the highest level of in vivo gene transfer to murine hepatocytes, approximately threefold more efficient than the best single-mutants, and ~30-80-fold higher compared with the wild-type (WT) AAV2 capsids. Improvement of gene transfer was similar for both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors, indicating that these effects are independent of viral second-strand DNA synthesis. Furthermore, Y730F and triple-mutant vectors provided a long-term therapeutic and tolerogenic expression of human factor IX (hF.IX) in hemophilia B (HB) mice after administration of a vector dose that only results in subtherapeutic and transient expression with WT AAV2 encapsidated vectors. In summary, introduction of multiple tyrosine-mutations into the AAV2 capsid results in vectors that yield at least 30-fold improvement of transgene expression, thereby lowering the required therapeutic dose and potentially vector-related immunogenicity. Such vectors should be attractive for treatment of hemophilia and other genetic diseases.


Assuntos
Dependovirus/genética , Terapia Genética , Hemofilia B/genética , Hemofilia B/terapia , Transdução Genética , Animais , Vetores Genéticos/genética , Células HeLa , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Tirosina/química
18.
Mol Ther Methods Clin Dev ; 23: 98-107, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34631930

RESUMO

Hepatic gene transfer with adeno-associated viral (AAV) vectors shows much promise for the treatment of the X-linked bleeding disorder hemophilia B in multiple clinical trials. In an effort to further innovate this approach and to introduce alternative vector designs with potentially superior features into clinical development, we recently built a vector platform based on AAV serotype 3 because of its superior tropism for human hepatocytes. A vector genome with serotype-matched inverted terminal repeats expressing hyperactive human coagulation factor IX (FIX)-Padua was designed for clinical use that is optimized for translation using hepatocyte-specific codon-usage bias and is depleted of immune stimulatory CpG motifs. Here, this vector genome was packaged into AAV3 (T492V + S663V) capsid for hepatic gene transfer in non-human primates. FIX activity within or near the normal range was obtained at a low vector dose of 5 × 1011 vector genomes/kg. Pre-existing neutralizing antibodies, however, completely or partially blocked hepatic gene transfer at that dose. No CD8+ T cell response against capsid was observed. Antibodies against the human FIX transgene product formed at a 10-fold higher vector dose, albeit hepatic gene transfer was remarkably consistent, and sustained FIX activity in the normal range was nonetheless achieved in two of three animals for the 3-month duration of the study. These results support the use of this vector at low vector doses for gene therapy of hemophilia B in humans.

19.
Mol Ther Methods Clin Dev ; 17: 198-208, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31970198

RESUMO

Early preclinical studies in rodents and other species did not reveal that vector or transgene immunity would present a significant hurdle for sustained gene expression. While there was early evidence of mild immune responses to adeno-associated virus (AAV) in preclinical studies, it was generally believed that these responses were too weak and transient to negatively impact sustained transduction. However, translation of the cumulative success in treating hemophilia B in rodents and dogs with an AAV2-F9 vector to human studies was not as successful. Despite significant progress in recent clinical trials for hemophilia, new immunotoxicities to AAV and transgene are emerging in humans that require better animal models to assess and overcome these responses. The animal models designed to address these immune complications have provided critical information to assess how vector dose, vector capsid processing, vector genome, difference in serotypes, and variations in vector delivery route can impact immunity and to develop approaches for overcoming pre-existing immunity. Additionally, a comprehensive dissection of innate, adaptive, and regulatory responses to AAV vectors in preclinical studies has provided a framework that can be utilized for development of immunomodulatory therapies to overcome or bypass immune responses and for developing strategic approaches toward engineering stealth AAV vectors that can circumvent immunity.

20.
Front Immunol ; 11: 1293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670285

RESUMO

Hemophilia A is an inherited coagulation disorder resulting in the loss of functional clotting factor VIII (FVIII). Presently, the most effective treatment is prophylactic protein replacement therapy. However, this requires frequent life-long intravenous infusions of plasma derived or recombinant clotting factors and is not a cure. A major complication is the development of inhibitory antibodies that nullify the replacement factor. Immune tolerance induction (ITI) therapy to reverse inhibitors can last from months to years, requires daily or every other day infusions of supraphysiological levels of FVIII and is effective in only up to 70% of hemophilia A patients. Preclinical and recent clinical studies have shown that gene replacement therapy with AAV vectors can effectively cure hemophilia A patients. However, it is unclear how hemophilia patients with high risk inhibitor F8 mutations or with established inhibitors will respond to gene therapy, as these patients have been excluded from ongoing clinical trials. AAV8-coF8 gene transfer in naïve BALB/c-F8e16-/Y mice (BALB/c-HA) results in anti-FVIII IgG1 inhibitors following gene transfer, which can be prevented by transient immune modulation with anti-mCD20 (18B12) and oral rapamycin. We investigated if we could improve ITI in inhibitor positive mice by combining anti-mCD20 and rapamycin with AAV8-coF8 gene therapy. Our hypothesis was that continuous expression of FVIII protein from gene transfer compared to transient FVIII from weekly protein therapy, would enhance regulatory T cell induction and promote deletion of FVIII reactive B cells, following reconstitution. Mice that received anti-CD20 had a sharp decline in inhibitors, which corresponded to FVIII memory B (Bmem) cell deletion. Importantly, only mice receiving both anti-mCD20 and rapamycin failed to increase inhibitors following rechallenge with intravenous FVIII protein therapy. Our data show that B and T cell immune modulation complements AAV8-coF8 gene therapy in naïve and inhibitor positive hemophilia A mice and suggest that such protocols should be considered for AAV gene therapy in high risk or inhibitor positive hemophilia patients.


Assuntos
Linfócitos B/imunologia , Fator VIII/genética , Fator VIII/imunologia , Tolerância Imunológica , Memória Imunológica , Depleção Linfocítica , Sirolimo/farmacologia , Transferência Adotiva , Animais , Linfócitos B/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos/genética , Hemofilia A/genética , Hemofilia A/imunologia , Hemofilia A/terapia , Imunossupressores/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Rituximab/farmacologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA