Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 184(13): 3502-3518.e33, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34048700

RESUMO

Thermogenic adipocytes possess a therapeutically appealing, energy-expending capacity, which is canonically cold-induced by ligand-dependent activation of ß-adrenergic G protein-coupled receptors (GPCRs). Here, we uncover an alternate paradigm of GPCR-mediated adipose thermogenesis through the constitutively active receptor, GPR3. We show that the N terminus of GPR3 confers intrinsic signaling activity, resulting in continuous Gs-coupling and cAMP production without an exogenous ligand. Thus, transcriptional induction of Gpr3 represents the regulatory parallel to ligand-binding of conventional GPCRs. Consequently, increasing Gpr3 expression in thermogenic adipocytes is alone sufficient to drive energy expenditure and counteract metabolic disease in mice. Gpr3 transcription is cold-stimulated by a lipolytic signal, and dietary fat potentiates GPR3-dependent thermogenesis to amplify the response to caloric excess. Moreover, we find GPR3 to be an essential, adrenergic-independent regulator of human brown adipocytes. Taken together, our findings reveal a noncanonical mechanism of GPCR control and thermogenic activation through the lipolysis-induced expression of constitutively active GPR3.


Assuntos
Tecido Adiposo Marrom/metabolismo , Receptor Constitutivo de Androstano/metabolismo , Lipólise , Receptores Acoplados a Proteínas G/metabolismo , Termogênese , Adipócitos/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Temperatura Baixa , Gorduras na Dieta/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Sistema Nervoso Simpático/metabolismo , Transcrição Gênica
2.
Cell Metab ; 33(2): 437-453.e5, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33378646

RESUMO

Adipose tissues display a remarkable ability to adapt to the dietary status. Here, we have applied single-nucleus RNA-seq to map the plasticity of mouse epididymal white adipose tissue at single-nucleus resolution in response to high-fat-diet-induced obesity. The single-nucleus approach allowed us to recover all major cell types and to reveal distinct transcriptional stages along the entire adipogenic trajectory from preadipocyte commitment to mature adipocytes. We demonstrate the existence of different adipocyte subpopulations and show that obesity leads to disappearance of the lipogenic subpopulation and increased abundance of the stressed lipid-scavenging subpopulation. Moreover, obesity is associated with major changes in the abundance and gene expression of other cell populations, including a dramatic increase in lipid-handling genes in macrophages at the expense of macrophage-specific genes. The data provide a powerful resource for future hypothesis-driven investigations of the mechanisms of adipocyte differentiation and adipose tissue plasticity.


Assuntos
Tecido Adiposo/metabolismo , Obesidade/metabolismo , Adipogenia/genética , Animais , Plasticidade Celular , Dieta Hiperlipídica , Camundongos , Obesidade/induzido quimicamente , Obesidade/genética , Análise de Sequência de RNA
3.
Sci Rep ; 10(1): 14052, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820201

RESUMO

C57BL/6J-related mouse strains are widely used animal models for diet-induced obesity (DIO). Multiple vendors breed C57BL/6J-related substrains which may introduce genetic drift and environmental confounders such as microbiome differences. To address potential vendor/substrain specific effects, we compared DIO of C57BL/6J-related substrains from three different vendors: C57BL/6J (Charles Rivers), C57BL/6JBomTac (Taconic Bioscience) and C57BL/6JRj (Janvier). After local acclimatization, DIO was induced by either a high-fat diet (HFD, 60% energy from fat) or western diet (WD, 42% energy from fat supplemented with fructose in the drinking water). All three groups on HFD gained a similar amount of total body weight, yet the relative amount of fat percentage and mass of inguinal- and epididymal white adipose tissue (iWAT and eWAT) was lower in C57BL/6JBomTac compared to the two other C57BL/6J-releated substrains. In contrast to HFD, the three groups on WD responded differently in terms of body weight gain, where C57BL/6J was particularly prone to WD. This was associated with a relative higher amount of eWAT, iWAT, and liver triglycerides. Although the HFD and WD had significant impact on the microbiota, we did not observe any major differences between the three groups of mice. Together, these data demonstrate significant differences in HFD- and WD-induced adiposity in C57BL/6J-related substrains, which should be considered in the design of animal DIO studies.


Assuntos
Dieta Hiperlipídica , Absorciometria de Fóton , Animais , Peso Corporal , Glucose/administração & dosagem , Insulina/sangue , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Tamanho do Órgão , Especificidade da Espécie , Triglicerídeos/metabolismo , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA