Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Circadian Rhythms ; 22: 1, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617711

RESUMO

Circadian Biology intersects with diverse scientific domains, intricately woven into the fabric of organismal physiology and behavior. The rhythmic orchestration of life by the circadian clock serves as a focal point for researchers across disciplines. This retrospective examination delves into several of the scientific milestones that have fundamentally shaped our contemporary understanding of circadian rhythms. From deciphering the complexities of clock genes at a cellular level to exploring the nuances of coupled oscillators in whole organism responses to stimuli. The field has undergone significant evolution lately guided by genetics approaches. Our exploration here considers key moments in the circadian-research landscape, elucidating the trajectory of this discipline with a keen eye on scientific advancements and paradigm shifts.

2.
J Circadian Rhythms ; 22: 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617710

RESUMO

Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.

3.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293078

RESUMO

We evaluated the signalling framework of immortalized cells from the hypothalamic suprachiasmatic nucleus (SCN) of the mouse. We selected a vasoactive intestinal peptide (VIP)-positive sub-clone of immortalized mouse SCN-cells stably expressing a cAMP-regulated-element (CRE)-luciferase construct named SCNCRE. We characterized these cells in terms of their status as neuronal cells, as well as for important components of the cAMP-dependent signal transduction pathway and compared them to SCN ex vivo. SCNCRE cells were treated with agents that modulate different intracellular signalling pathways to investigate their potency and timing for transcriptional CRE-dependent signalling. Several activating pathways modulate SCN neuronal signalling via the cAMP-regulated-element (CRE: TGACGCTA) and phosphorylation of transcription factors such as cAMP-regulated-element-binding protein (CREB). CRE-luciferase activity induced by different cAMP-signalling pathway-modulating agents displayed a variety of substance-specific dose and time-dependent profiles and interactions relevant to the regulation of SCN physiology. Moreover, the induction of the protein kinase C (PKC) pathway by phorbol ester application modulates the CRE-dependent signalling pathway as well. In conclusion, the cAMP/PKA- and the PKC-regulated pathways individually and in combination modulate the final CRE-dependent transcriptional output.


Assuntos
Neurônios do Núcleo Supraquiasmático , Peptídeo Intestinal Vasoativo , Camundongos , Animais , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios do Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Luciferases/metabolismo , Ésteres de Forbol
4.
J Pineal Res ; 70(3): e12713, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33368564

RESUMO

The human pineal gland regulates day-night dynamics of multiple physiological processes, especially through the secretion of melatonin. Using mass-spectrometry-based proteomics and dedicated analysis tools, we identify proteins in the human pineal gland and analyze systematically their variation throughout the day and compare these changes in the pineal proteome between control specimens and donors diagnosed with autism. Results reveal diverse regulated clusters of proteins with, among others, catabolic carbohydrate process and cytoplasmic membrane-bounded vesicle-related proteins differing between day and night and/or control versus autism pineal glands. These data show novel and unexpected processes happening in the human pineal gland during the day/night rhythm as well as specific differences between autism donor pineal glands and those from controls.


Assuntos
Transtorno Autístico/metabolismo , Ritmo Circadiano , Glândula Pineal/metabolismo , Proteínas/metabolismo , Proteoma , Proteômica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Transtorno Autístico/diagnóstico , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Estudos de Casos e Controles , Humanos , Glândula Pineal/fisiopatologia , Mapas de Interação de Proteínas , Fatores de Tempo
5.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34884683

RESUMO

Cyclic nucleotides are important second messengers involved in cellular events, and analogues of this type of molecules are promising drug candidates. Some cyclic nucleotide analogues have become standard tools for the investigation of biochemical and physiological signal transduction pathways, such as the Rp-diastereomers of adenosine and guanosine 3',5'-cyclic monophosphorothioate, which are competitive inhibitors of cAMP- and cGMP-dependent protein kinases. Next generation analogues exhibit a higher membrane permeability, increased resistance against degradation, and improved target specificity, or are caged or photoactivatable for fast and/or targeted cellular imaging. Novel specific nucleotide analogues activating or inhibiting cyclic nucleotide-dependent ion channels, EPAC/GEF proteins, and bacterial target molecules have been developed, opening new avenues for basic and applied research. This review provides an overview of the current state of the field, what can be expected in the future and some practical considerations for the use of cyclic nucleotide analogues in biological systems.


Assuntos
AMP Cíclico/análogos & derivados , GMP Cíclico/análogos & derivados , Animais , Humanos
6.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212816

RESUMO

Signaling pathways, depending on the second messenger molecule cAMP, modulate hippocampal cell signaling via influencing transcription factors like cAMP-regulated element-binding protein (CREB) or early growth response 1 EGR1/Krox24/zif268/ZENK (EGR1). Here, we investigated two reporter cell lines derived from an immortalized hippocampal neuronal cell line stably expressing a CRE- or EGR1-luciferase reporter gene (HT22CREluc and HT22EGR1luc, respectively). The cells were subjected to phosphodiesterase inhibitors and other cAMP-modulating agents to investigate dose- and time-dependent phosphodiesterase (PDE)-mediated fine-tuning of cAMP-dependent transcriptional signaling. The non-isoform-specific cyclic nucleotide phosphodiesterase (PDE) inhibitor isobutyl-methyl-xanthine (IBMX), as well as selective inhibitors of PDE3 (milrinone) and PDE4 (rolipram), were tested for their ability to elevate CRE- and EGR1-luciferase activity. Pharmacological parameters like onset of activity, maximum activity, and offset of activity were determined. In summary, phosphodiesterase inhibition appeared similarly potent in comparison to adenylate cyclase stimulation or direct activation of protein kinase A (PKA) via specific cAMP agonists and was at least partly mediated by PKA as shown by the selective PKA inhibitor Rp-8-Br-cAMPS. Moreover, transcriptional activation by PDE inhibition was also influenced by organic anion-exchanger action and interacted with fibroblast growth factor (FGF) receptor-mediated pathways.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Hipocampo/metabolismo , Milrinona/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Rolipram/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Animais , Linhagem Celular , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Hipocampo/citologia , Camundongos , Ativação Transcricional/efeitos dos fármacos
7.
Neural Plast ; 2018: 6238989, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849561

RESUMO

Learning, memory consolidation, and retrieval are processes known to be modulated by the circadian (circa: about; dies: day) system. The circadian regulation of memory performance is evolutionarily conserved, independent of the type and complexity of the learning paradigm tested, and not specific to crepuscular, nocturnal, or diurnal organisms. In mammals, long-term memory (LTM) formation is tightly coupled to de novo gene expression of plasticity-related proteins and posttranslational modifications and relies on intact cAMP/protein kinase A (PKA)/protein kinase C (PKC)/mitogen-activated protein kinase (MAPK)/cyclic adenosine monophosphate response element-binding protein (CREB) signaling. These memory-essential signaling components cycle rhythmically in the hippocampus across the day and night and are clearly molded by an intricate interplay between the circadian system and memory. Important components of the circadian timing mechanism and its plasticity are members of the Period clock gene family (Per1, Per2). Interestingly, Per1 is rhythmically expressed in mouse hippocampus. Observations suggest important and largely unexplored roles of the clock gene protein PER1 in synaptic plasticity and in the daytime-dependent modulation of learning and memory. Here, we review the latest findings on the role of the clock gene Period 1 (Per1) as a candidate molecular and mechanistic blueprint for gating the daytime dependency of memory processing.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Hipocampo/metabolismo , Memória/fisiologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Circadianas Period/metabolismo , Transdução de Sinais/fisiologia
8.
J Neurochem ; 138(5): 731-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27246400

RESUMO

Memory performance varies over a 24-h day/night cycle. While the detailed underlying mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element-binding protein (CREB) are central to the circadian (~ 24 h) regulation of learning and memory. We recently identified the clock protein PERIOD1 (PER1) as a vehicle that translates information encoding time of day to hippocampal plasticity. We here elaborate how PER1 may gate the sensitivity of memory-relevant hippocampal signaling pathways. We found that in wild-type mice (WT), spatial learning triggers CREB phosphorylation only during the daytime, and that this effect depends on the presence of PER1. The time-of-day-dependent induction of CREB phosphorylation can be reproduced pharmacologically in acute hippocampal slices prepared from WT mice, but is absent in preparations made from Per1-knockout (Per1(-/-) ) mice. We showed that the PER1-dependent CREB phosphorylation is regulated downstream of MAPK. Stimulation of WT hippocampal neurons triggered the co-translocation of PER1 and the CREB kinase pP90RSK (pMAPK-activated ribosomal S6 kinase) into the nucleus. In hippocampal neurons from Per1(-/-) mice, however, pP90RSK remained perinuclear. A co-immunoprecipitation assay confirmed a high-affinity interaction between PER1 and pP90RSK. Knocking down endogenous PER1 in hippocampal cells inhibited adenylyl cyclase-dependent CREB activation. Taken together, the PER1-dependent modulation of cytoplasmic-to-nuclear signaling in the murine hippocampus provides a molecular explanation for how the circadian system potentially shapes a temporal framework for daytime-dependent memory performance, and adds a novel facet to the versatility of the clock gene protein PER1. We provide evidence that the circadian clock gene Period1 (Per1) regulates CREB phosphorylation in the mouse hippocampus, sculpturing time-of-day-dependent memory formation. This molecular mechanism constitutes the functional link between circadian rhythms and learning efficiency. In hippocampal neurons of wild-type mice, pP90RSK translocates into the nucleus upon stimulation with forskolin (left), whereas in Period1-knockout (Per1(-/-) ) mice (right) the kinase is trapped at the nuclear periphery, unable to efficiently phosphorylate nuclear CREB. Consequently, the presence of PER1 in hippocampal neurons is a prerequisite for the time-of-day-dependent phosphorylation of CREB, as it regulates the shuttling of pP90RSK into the nucleus. Representative immunofluorescence images show a temporal difference in phosphorylated cAMP response element-binding protein (pCREB; green color) levels in all regions of the dorsal hippocampus between a wild-type C3H mouse (WT; left) and a Period1-knockout (Per1(-/-) ; right) mouse. Images were taken 2 h after lights on, thus, when fluctuating levels of pCREB peak in WT mouse hippocampus. Insets show a representative hippocampal neuron, in response to activating cAMP signaling, stained for the neuronal marker NeuN (red), the nuclear marker DAPI (blue) and the activated CREB kinase pP90RSK (green). The image was taken 2 h after light onset (at the peak of the endogenous CREB phosphorylation that fluctuates with time of day). Magnification: 100X, inset 400X. Read the Editorial Highlight for this article on page 650. Cover image for this issue: doi: 10.1111/jnc.13332.


Assuntos
Ritmo Circadiano/fisiologia , Hipocampo/metabolismo , Memória/fisiologia , Proteínas Circadianas Period/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/fisiologia , Animais , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/fisiologia , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação
9.
Proc Biol Sci ; 281(1781): 20140034, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24598427

RESUMO

Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour.


Assuntos
Comportamento Animal/fisiologia , Instinto , Proteínas Circadianas Period/metabolismo , Análise de Variância , Animais , Corte , Feminino , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Comportamento de Nidação/fisiologia , Proteínas Circadianas Period/genética , Vocalização Animal/fisiologia
10.
J Pineal Res ; 54(1): 46-57, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22775292

RESUMO

Melatonin is a synchronizer of many physiological processes. Abnormal melatonin signaling is associated with human disorders related to sleep, metabolism, and neurodevelopment. Here, we present the X-ray crystal structure of human N-acetyl serotonin methyltransferase (ASMT), the last enzyme of the melatonin biosynthesis pathway. The polypeptide chain of ASMT consists of a C-terminal domain, which is typical of other SAM-dependent O-methyltransferases, and an N-terminal domain, which intertwines several helices with another monomer to form the physiologically active dimer. Using radioenzymology, we analyzed 20 nonsynonymous variants identified through the 1000 genomes project and in patients with neuropsychiatric disorders. We found that the majority of these mutations reduced or abolished ASMT activity including one relatively frequent polymorphism in the Han Chinese population (N17K, rs17149149). Overall, we estimate that the allelic frequency of ASMT deleterious mutations ranges from 0.66% in Europe to 2.97% in Asia. Mapping of the variants on to the 3-dimensional structure clarifies why some are harmful and provides a structural basis for understanding melatonin deficiency in humans.


Assuntos
Acetilserotonina O-Metiltransferasa/química , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Sequência de Aminoácidos , Povo Asiático/genética , Cristalografia por Raios X , Frequência do Gene , Humanos , Melatonina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Polimorfismo Genético , Alinhamento de Sequência
11.
Cells ; 12(22)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998380

RESUMO

GPR55 is involved in many physiological and pathological processes. In cancer, GPR55 has been described to show accelerating and decelerating effects in tumor progression resulting from distinct intracellular signaling pathways. GPR55 becomes activated by LPI and various plant-derived, endogenous, and synthetic cannabinoids. Cannabinoids such as THC exerted antitumor effects by inhibiting tumor cell proliferation or inducing apoptosis. Besides its effects through CB1 and CB2 receptors, THC modulates cellular responses among others via GPR55. Previously, we reported a reduction in Ki67-immunoreactive nuclei of human glioblastoma cells after GPR55 activation in general by THC and in particular by LPI. In the present study, we investigated intracellular mechanisms leading to an altered number of Ki67+ nuclei after stimulation of GPR55 by LPI and THC. Pharmacological analyses revealed a strongly involved PLC-IP3 signaling and cell-type-specific differences in Gα-, Gßγ-, RhoA-ROCK, and calcineurin signaling. Furthermore, immunochemical visualization of the calcineurin-dependent transcription factor NFAT revealed an unchanged subcellular localization after THC or LPI treatment. The data underline the cell-type-specific diversity of GPR55-associated signaling pathways in coupling to intracellular G proteins. Furthermore, this diversity might determine the outcome and the individual responsiveness of tumor cells to GPR55 stimulation by cannabin oids.


Assuntos
Canabinoides , Glioblastoma , Humanos , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Antígeno Ki-67 , Calcineurina
12.
Methods Mol Biol ; 2550: 123-132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180685

RESUMO

The human pineal gland regulates the day-night dynamics of multiple physiological processes, especially through the secretion of melatonin. Recently, using mass spectrometry-based proteomics and dedicated analysis tools, we have identified regulated proteins and signaling pathways that differ between day and night and/or between control and autistic pineal glands. This large-scale proteomic approach is the method of choice to study proteins in a biological system globally. This chapter proposes a protocol for large-scale analysis of the pineal gland proteome.


Assuntos
Melatonina , Glândula Pineal , Ritmo Circadiano/fisiologia , Humanos , Espectrometria de Massas , Melatonina/metabolismo , Glândula Pineal/metabolismo , Proteoma/metabolismo , Proteômica/métodos
13.
J Pineal Res ; 51(1): 17-43, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21517957

RESUMO

The human pineal gland is a neuroendocrine transducer that forms an integral part of the brain. Through the nocturnally elevated synthesis and release of the neurohormone melatonin, the pineal gland encodes and disseminates information on circadian time, thus coupling the outside world to the biochemical and physiological internal demands of the body. Approaches to better understand molecular details behind the rhythmic signalling in the human pineal gland are limited but implicitly warranted, as human chronobiological dysfunctions are often associated with alterations in melatonin synthesis. Current knowledge on melatonin synthesis in the human pineal gland is based on minimally invasive analyses, and by the comparison of signalling events between different vertebrate species, with emphasis put on data acquired in sheep and other primates. Together with investigations using autoptic pineal tissue, a remnant silhouette of premortem dynamics within the hormone's biosynthesis pathway can be constructed. The detected biochemical scenario behind the generation of dynamics in melatonin synthesis positions the human pineal gland surprisingly isolated. In this neuroendocrine brain structure, protein-protein interactions and nucleo-cytoplasmic protein shuttling indicate furthermore a novel twist in the molecular dynamics in the cells of this neuroendocrine brain structure. These findings have to be seen in the light that an impaired melatonin synthesis is observed in elderly and/or demented patients, in individuals affected by Alzheimer's disease, Smith-Magenis syndrome, autism spectrum disorder and sleep phase disorders. Already, recent advances in understanding signalling dynamics in the human pineal gland have significantly helped to counteract chronobiological dysfunctions through a proper restoration of the nocturnal melatonin surge.


Assuntos
Encefalopatias/fisiopatologia , Transtornos Cronobiológicos/fisiopatologia , Glândula Pineal/fisiologia , Animais , Encefalopatias/patologia , Transtornos Cronobiológicos/patologia , Humanos , Filogenia , Glândula Pineal/anatomia & histologia
14.
J Pineal Res ; 51(1): 145-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21517958

RESUMO

Time of day is communicated to the body through rhythmic cues, including pineal gland melatonin synthesis, which is restricted to nighttime. Whereas in most rodents transcriptional regulation of the arylalkylamine N-acetyltransferase (Aanat) gene is essential for rhythmic melatonin synthesis, investigations into nonrodent mammalian species have shown post-transcriptional regulation to be of central importance, with molecular mechanisms still elusive. Therefore, human pineal tissues, taken from routine autopsies were allocated to four time-of-death groups (night/dawn/day/dusk) and analyzed for daytime-dependent changes in phosphorylated AANAT (p31T-AANAT) and in acetyl-serotonin-methyltransferase (ASMT) expression and activity. Protein content, intracellular localization, and colocalization of p31T-AANAT and ASMT were assessed, using immunoblotting, immunofluorescence, and immunoprecipitation techniques. Fresh sheep pineal gland preparations were used for comparative purposes. The amount of p31T-AANAT and ASMT proteins as well as their intracellular localization showed no diurnal variation in autoptic human and fresh sheep pineal glands. Moreover, in human and sheep pineal extracts, AANAT could not be dephosphorylated, which was at variance to data derived from rat pineal extracts. P31T-AANAT and ASMT were often found to colocalize in cellular rod-like structures that were also partly immunoreactive for the pinealocyte process-specific marker S-antigen (arrestin) in both, human and sheep pinealocytes. Protein-protein interaction studies with p31T-AANAT, ASMT, and S-antigen demonstrated a direct association and formation of robust complexes, involving also 14-3-3. This work provides evidence for a regulation principle for AANAT activity in the human pineal gland, which may not be based on a p31T-AANAT phosphorylation/dephosphorylation switch, as described for other mammalian species.


Assuntos
Acetilserotonina O-Metiltransferasa/metabolismo , Arilalquilamina N-Acetiltransferase/metabolismo , Melatonina/biossíntese , Glândula Pineal/enzimologia , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/imunologia , Adulto , Idoso , Análise de Variância , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Western Blotting , Feminino , Humanos , Modelos Lineares , Masculino , Melatonina/metabolismo , Microscopia de Fluorescência , Pessoa de Meia-Idade , Glândula Pineal/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ovinos
15.
Ann Anat ; 223: 43-48, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30716467

RESUMO

BACKGROUND: Ultrasonic vocalizations (USV) of mice are produced in and emitted by the larynx. However, which anatomical elements of the mouse larynx are involved and to which aspects of USV they contribute is not clear. Frequency and amplitude parameters of mice, deficient in the clock gene Period1 (mPer1-/- mice) are distinguishably different compared to C3H wildtype (WT) controls. Because structural differences in the larynx may be a reason for the different USV observed, we analyzed laryngeal anatomy of mPer1-/- mice and WT control animals using micro-computed-tomography and stereology. RESULTS: In mPer1-/- mice, we found laryngeal cartilages to be normally arranged, and the thyroid, arytenoid and epiglottal cartilages were similar in diameter and volume measurements, compared to WT mice. However, in the cricoid cartilage, a significant difference in the dorso-ventral diameter and volume was evident. CONCLUSION: Our findings imply that laryngeal morphology is affected by inactivation of the clock gene Period1 in mice, which may contribute to their abnormal USV.


Assuntos
Laringe/anatomia & histologia , Camundongos Endogâmicos C3H/anatomia & histologia , Proteínas Circadianas Period/deficiência , Vocalização Animal/fisiologia , Animais , Imageamento Tridimensional , Laringe/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C3H/genética , Camundongos Endogâmicos C3H/fisiologia , Proteínas Circadianas Period/genética , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Microtomografia por Raio-X
16.
Cells ; 8(9)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491915

RESUMO

Circadian oscillations in circulating leukocyte subsets including immature hematopoietic cells have been appreciated; the origin and nature of these alterations remain elusive. Our analysis of wild-type C57BL/6 mice under constant darkness confirmed circadian fluctuations of circulating leukocytes and clonogenic cells in blood and spleen but not bone marrow. Clock gene deficient Bmal1-/- mice lacked this regulation. Cell cycle analyses in the different hematopoietic compartments excluded circadian changes in total cell numbers, rather favoring shifting hematopoietic cell redistribution as the underlying mechanism. Transplant chimeras demonstrate that circadian rhythms within the stroma mediate the oscillations independently of hematopoietic-intrinsic cues. We provide evidence of circadian CXCL12 regulation via clock genes in vitro and were able to confirm CXCL12 oscillation in bone marrow and blood in vivo. Our studies further implicate cortisol as the conveyor of circadian input to bone marrow stroma and mediator of the circadian leukocyte oscillation. In summary, we establish hematopoietic-extrinsic cues as causal for circadian redistribution of circulating mature/immature blood cells.


Assuntos
Relógios Circadianos , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células 3T3 , Fatores de Transcrição ARNTL/genética , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Baço/citologia
17.
Endocr Rev ; 40(1): 66-95, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169559

RESUMO

A plethora of physiological processes show stable and synchronized daily oscillations that are either driven or modulated by biological clocks. A circadian pacemaker located in the suprachiasmatic nucleus of the ventral hypothalamus coordinates 24-hour oscillations of central and peripheral physiology with the environment. The circadian clockwork involved in driving rhythmic physiology is composed of various clock genes that are interlocked via a complex feedback loop to generate precise yet plastic oscillations of ∼24 hours. This review focuses on the specific role of the core clockwork gene Period1 and its paralogs on intra-oscillator and extra-oscillator functions, including, but not limited to, hippocampus-dependent processes, cardiovascular function, appetite control, as well as glucose and lipid homeostasis. Alterations in Period gene function have been implicated in a wide range of physical and mental disorders. At the same time, a variety of conditions including metabolic disorders also impact clock gene expression, resulting in circadian disruptions, which in turn often exacerbates the disease state.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Homeostase/fisiologia , Proteínas Circadianas Period/fisiologia , Transdução de Sinais/fisiologia , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Homeostase/genética , Humanos , Proteínas Circadianas Period/genética , Transdução de Sinais/genética
18.
Trends Endocrinol Metab ; 18(4): 142-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17374488

RESUMO

In the mammalian pineal gland, information on environmental lighting conditions that is neuronally encoded by the retina is converted into nocturnally elevated synthesis of the hormone melatonin. Evolutionary pressure has changed the morphology of vertebrate pinealocytes, eliminating direct photoreception and the endogenous clock function. Despite these changes, nocturnally elevated melatonin synthesis has remained a reliable indicator of time throughout evolution. In the photo-insensitive mammalian pineal gland this message of darkness depends on the master circadian pacemaker in the hypothalamic suprachiasmatic nuclei. The dramatic change in vertebrate pinealocytes has received little attention; here, we therefore link the known evolutionary morphodynamics and well-investigated biochemical details responsible for rhythmic synthesis of melatonin with recently characterized patterns of gene expression in the pineal gland. We also address the enigmatic function of clockwork molecules in mammalian pinealocytes.


Assuntos
Glândula Pineal/fisiologia , Animais , Relógios Biológicos , Evolução Biológica , Ritmo Circadiano , Humanos , Luz , Melatonina/fisiologia , Proteínas do Tecido Nervoso/genética , Glândula Pineal/química , Glândula Pineal/citologia
19.
Eur J Med Res ; 13(2): 73-8, 2008 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-18424366

RESUMO

Since its discovery glucagon-like peptide-1 (GLP-1) is investigated as a treatment for type II diabetes based on its major function as insulin secretagogue. A therapeutic use is, however, limited by its short biological half-life in the range of minutes, predominantly caused via degradation catalyzed by dipeptidyl peptidase IV (DPP-IV). Therefore, we aimed to design a GLP-1 analogue exhibiting resistance against DPP-IV-catalyzed inactivation while retaining its biological activity. By means of matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) we have studied the stability of the N-terminally blocked new analogue Ac-GLP-1-(7-34)-amide against DPP-IV and compared it with both unblocked GLP-1-(7-34)-amide and the major naturally occurring form GLP-1-(7-36)-amide. GLP-1-(7-36)-amide and the C-terminally two amino acid residues shorter GLP-1-(7-34)-amide rapidly generated peptide fragments truncated by the N-terminal dipeptide. In contrast, the N-terminal blocked Ac-GLP-1-(7-34)-amide was not degraded in the presence of DPP-IV over a period of at least two hours. Ac-GLP-1-(7-34)-amide induced a concentration-dependent increase of intracellular cAMP production and insulin release from rat insulinoma RIN-m5F cells to an extent comparable to that found for the N-terminally unblocked peptides GLP-1-(7-34)-amide and GLP-1-(7-36)-amide. Ac-GLP-1-(7-34)-amide may thus have the potential to act as a new long-acting GLP-1 analogue with significant resistance against DPP-IV and retained biological activity in vitro. Further research is required to investigate whether Ac-GLP-1-(7-34)-amide also exhibits its characteristics in animal models and humans.


Assuntos
Amidas/química , AMP Cíclico/metabolismo , Dipeptidil Peptidase 4/farmacologia , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Insulinoma/metabolismo , Acetilação , Animais , Células Cultivadas , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Secreção de Insulina , Insulinoma/patologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Front Mol Neurosci ; 11: 386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405349

RESUMO

Cyclic adenosine 3',5'monophosphate (cAMP) regulated element binding protein (CREB) is a transcription factor involved in many different signaling processes including memory storage and retrieval. The mouse hippocampal neuronal cell line HT22 is widely used as a model system for neuronal cell death and cellular signal pathway investigations. For the present work a variant of HT22 with a stably expressed CRE-luciferase (CRE-luc) reporter (HT22CRE) is introduced, characterized and used to investigate cAMP-dependent and independent CRE-dependent signal processes. Trehalose (Mykose or 1-α-Glucopyranosyl-1-α-glucopyranosid) is a naturally occurring disaccharide consisting of two α,α',1,1-glycosidic connected glucose molecules in a wide range of organisms but usually not found in mammals. Trehalose has been shown to activate autophagy, a process which regulates the degradation and recycling of proteins and organelles. The exact processes how trehalose application works on mammalian neuronal cells is not yet understood. The present work shows that trehalose application dose-dependently elevates CRE-luc activity in HT22 cells and acts synergistically with cAMP-elevating agents. In this pathway cAMP-dependent protein kinase (PKA) appears to be the most important factor and the stress kinase p38 and protein tyrosine kinases (PTKs) act as modulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA