Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(6): 100779, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679388

RESUMO

New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including thermal proteome profiling and proteome integral solubility alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply thermal proteome profiling and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.


Assuntos
Venenos de Crotalídeos , Crotalus , Proteoma , Proteômica , Animais , Crotalus/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Venenos de Serpentes/metabolismo
2.
Cardiovasc Res ; 120(8): 943-953, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38666458

RESUMO

AIMS: Following myocardial infarction (MI), the heart repairs itself via a fibrotic repair response. The degree of fibrosis is determined by the balance between deposition of extracellular matrix (ECM) by activated fibroblasts and breakdown of nascent scar tissue by proteases that are secreted predominantly by inflammatory cells. Excessive proteolytic activity and matrix turnover has been observed in human heart failure, and protease inhibitors in the injured heart regulate matrix breakdown. Serine protease inhibitors (Serpins) represent the largest and the most functionally diverse family of evolutionary conserved protease inhibitors, and levels of the specific Serpin, SerpinA3, have been strongly associated with clinical outcomes in human MI as well as non-ischaemic cardiomyopathies. Yet, the role of Serpins in regulating cardiac remodelling is poorly understood. The aim of this study was to understand the role of Serpins in regulating scar formation after MI. METHODS AND RESULTS: Using a SerpinA3n conditional knockout mice model, we observed the robust expression of Serpins in the infarcted murine heart and demonstrate that genetic deletion of SerpinA3n (mouse homologue of SerpinA3) leads to increased activity of substrate proteases, poorly compacted matrix, and significantly worse post-infarct cardiac function. Single-cell transcriptomics complemented with histology in SerpinA3n-deficient animals demonstrated increased inflammation, adverse myocyte hypertrophy, and expression of pro-hypertrophic genes. Proteomic analysis of scar tissue demonstrated decreased cross-linking of ECM peptides consistent with increased proteolysis in SerpinA3n-deficient animals. CONCLUSION: Our study demonstrates a hitherto unappreciated causal role of Serpins in regulating matrix function and post-infarct cardiac remodelling.


Assuntos
Modelos Animais de Doenças , Fibrose , Camundongos Knockout , Infarto do Miocárdio , Miocárdio , Remodelação Ventricular , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Camundongos Endogâmicos C57BL , Serpinas/metabolismo , Serpinas/genética , Função Ventricular Esquerda , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Masculino , Proteínas de Fase Aguda
3.
Med ; 5(3): 254-270.e8, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38423011

RESUMO

BACKGROUND: Perineural invasion (PNI) and nerve density within the tumor microenvironment (TME) have long been associated with worse outcomes in head and neck squamous cell carcinoma (HNSCC). This prompted an investigation into how nerves within the tumor microenvironment affect the adaptive immune system and tumor growth. METHODS: We used RNA sequencing analysis of human tumor tissue from a recent HNSCC clinical trial, proteomics of human nerves from HNSCC patients, and syngeneic orthotopic murine models of HPV-unrelated HNSCC to investigate how sensory nerves modulate the adaptive immune system. FINDINGS: Calcitonin gene-related peptide (CGRP) directly inhibited CD8 T cell activity in vitro, and blocking sensory nerve function surgically, pharmacologically, or genetically increased CD8 and CD4 T cell activity in vivo. CONCLUSIONS: Our data support sensory nerves playing a role in accelerating tumor growth by directly acting on the adaptive immune system to decrease Th1 CD4 T cells and activated CD8 T cells in the TME. These data support further investigation into the role of sensory nerves in the TME of HNSCC and points toward the possible treatment efficacy of blocking sensory nerve function or specifically inhibiting CGRP release or activity within the TME to improve outcomes. FUNDING: 1R01DE028282-01, 1R01DE028529-01, 1P50CA261605-01 (to S.D.K.), 1R01CA284651-01 (to S.D.K.), and F31 DE029997 (to L.B.D.).


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Neoplasias de Cabeça e Pescoço , Animais , Humanos , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA