RESUMO
Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.
Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Virais/imunologia , Candida albicans/química , Mananas/imunologia , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Epitopos/imunologia , Imunidade Inata , Imunização , Inflamação/patologia , Interferons/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Seios Paranasais/metabolismo , Subunidades Proteicas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Fator de Transcrição RelB/metabolismo , Células Vero , beta-Glucanas/metabolismoRESUMO
Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In contrast, compared to subjects with other infectious or noninfectious lung pathologies, IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.
Assuntos
COVID-19/patologia , Interferons/metabolismo , Sistema Respiratório/virologia , Índice de Gravidade de Doença , Fatores Etários , Envelhecimento/patologia , COVID-19/genética , COVID-19/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Humanos , Interferons/genética , Leucócitos/patologia , Leucócitos/virologia , Pulmão/patologia , Pulmão/virologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Carga ViralRESUMO
Growing evidence suggests that conventional dendritic cells (cDCs) undergo aberrant maturation in COVID-19, which negatively affects T-cell activation. The presence of effector T cells in patients with mild disease and dysfunctional T cells in severely ill patients suggests that adequate T-cell responses limit disease severity. Understanding how cDCs cope with SARS-CoV-2 can help elucidate how protective immune responses are generated. Here, we report that cDC2 subtypes exhibit similar infection-induced gene signatures, with the upregulation of IFN-stimulated genes and IL-6 signaling pathways. Furthermore, comparison of cDCs between patients with severe and mild disease showed severely ill patients to exhibit profound downregulation of genes encoding molecules involved in antigen presentation, such as MHCII, TAP, and costimulatory proteins, whereas we observed the opposite for proinflammatory molecules, such as complement and coagulation factors. Thus, as disease severity increases, cDC2s exhibit enhanced inflammatory properties and lose antigen presentation capacity. Moreover, DC3s showed upregulation of anti-apoptotic genes and accumulated during infection. Direct exposure of cDC2s to the virus in vitro recapitulated the activation profile observed in vivo. Our findings suggest that SARS-CoV-2 interacts directly with cDC2s and implements an efficient immune escape mechanism that correlates with disease severity by downregulating crucial molecules required for T-cell activation.
Assuntos
COVID-19/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , HumanosRESUMO
The ability of dendritic cells (DCs) to sense viral pathogens and orchestrate a proper immune response makes them one of the key players in antiviral immunity. Different DC subsets have complementing functions during viral infections, some specialize in antigen presentation and cross-presentation and others in the production of cytokines with antiviral activity, such as type I interferons. In this review, we summarize the latest updates concerning the role of DCs in viral infections, with particular focus on the complex interplay between DC subsets and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Despite being initiated by a vast array of immune receptors, DC-mediated antiviral responses often converge towards the same endpoint, that is the production of proinflammatory cytokines and the activation of an adaptive immune response. Nonetheless, the inherent migratory properties of DCs make them a double-edged sword and often viral recognition by DCs results in further viral dissemination. Here we illustrate these various aspects of the antiviral functions of DCs and also provide a brief overview of novel antiviral vaccination strategies based on DCs targeting.
Assuntos
COVID-19/virologia , Células Dendríticas/virologia , Receptores de Reconhecimento de Padrão/imunologia , SARS-CoV-2/patogenicidade , Viroses/virologia , Citocinas/imunologia , Células Dendríticas/imunologia , Humanos , Viroses/imunologiaRESUMO
The identification of a highly sensitive method to check the delivery of administered nanodrugs into the tumor cells is a crucial step of preclinical studies aimed to develop new nanoformulated cures, since it allows the real therapeutic potential of these devices to be forecast. In the present work, the ability of an H-ferritin (HFn) nanocage, already investigated as a powerful tool for cancer therapy thanks to its ability to actively interact with the transferrin receptor 1, to act as an efficient probe for the monitoring of nanodrug delivery to tumors is demonstrated. The final formulation is a bioluminescent nanoparticle, where the luciferin probe is conjugated on nanoparticle surface by means of a disulfide containing linker (Luc-linker@HFn) which is subjected to glutathione-induced cyclization in tumor cell cytoplasm. The prolonged imaging of luciferase+ tumor models, demonstrated by an in vitro and an in vivo approach, associated with the prolonged release of luciferin into cancer cells by disulfide bridge reduction, clearly indicates the high efficiency of Luc-linker@HFn for drug delivery to the tumor tissues.
Assuntos
Apoferritinas , Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias , Apoferritinas/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológicoRESUMO
Dendritic cells (DCs) play a pivotal role in immune surveillance, acting as sentinels that coordinate immune responses within tissues. Although differences in the identity and functional states of DC subpopulations have been identified through multiparametric flow cytometry and single-cell RNA sequencing, these methods do not provide information about the spatial context in which the cells are located. This knowledge is crucial for understanding tissue organisation and cellular cross-talk. Recent developments in multiplex imaging techniques can now offer insights into this complex spatial and functional landscape. This review provides a concise overview of these imaging methodologies, emphasising their application in identifying DCs to delineate their tissue-specific functions and aiding newcomers in navigating this field.
RESUMO
In cancer microenvironment, aberrant glycosylation events of ECM proteins and cell surface receptors occur. We developed a protocol to generate 3D bioprinted models of colorectal cancer (CRC) crosslinking hyaluronic acid and gelatin functionalized with three signalling glycans characterized in CRC, 3'-Sialylgalactose, 6'-Sialylgalactose and 2'-Fucosylgalactose. The crosslinking, performed exploiting azide functionalized gelatin and hyaluronic acid and 4arm-PEG-dibenzocyclooctyne, resulted in biocompatible hydrogels that were 3D bioprinted with commercial CRC cells HT-29 and patient derived CRC tumoroids. The glycosylated hydrogels showed good 3D printability, biocompatibility and stability over the time. SEM and synchrotron radiation SAXS/WAXS analysis revealed the influence of glycosylation in the construct morphology, whereas MALDI-MS imaging showed that protein profiles of tumoroid cells vary with glycosylation, indicating that sialylation and fucosylation of ECM proteins induce diverse alterations to the proteome of the tumoroid and surrounding cells.
Assuntos
Neoplasias Colorretais , Ácido Hialurônico , Humanos , Gelatina/farmacologia , Espalhamento a Baixo Ângulo , Difração de Raios X , Polissacarídeos , Hidrogéis/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Microambiente TumoralRESUMO
BACKGROUND: Glucan is an immunomodulating agent used for cancer therapy. We investigated the effects of glucan on immune cell response to prostate carcinoma. METHODS: Dendritic cells (DC) were co-cultured with prostate carcinoma cells LNCaP and/or glucan, and maturation markers expression, cytokine release, and superoxide anion production were evaluated. Conditioned media from glucan-treated or untreated DC and/or LNCaP cultures were used to stimulate T lymphocytes and natural killer (NK) cells. RESULTS: LNCaP promoted partial DC maturation and scarce IL-12 secretion. Glucan induced DC maturation but no IL-12 production by DC. However, glucan increased IL-12 release by DC co-cultured with LNCaP. Moreover, LNCaP enhanced IL-1ß, IL-23, IL-6, and TNF-α secretion, but decreased superoxide anion production in glucan-stimulated DC. The NADPH oxidase inhibitor diphenyliodonium chloride (DPI) and the superoxide anion scavenger superoxide dismutase (SOD) reproduced this effect, but did not affect IL-12 secretion. Conditioned media of glucan-treated DC/LNCaP co-cultures activated IFN-γ production by NK cells and Th1/Th17 generation by CD4(+) lymphocytes, whereas media from DC/LNCaP co-cultured without glucan produced scarce NK and CD4(+) cells responses. Experiments performed with an IL-12-blocking antibody demonstrated that these effects arise from glucan-dependent regulation of IL-12 production by DC. CONCLUSIONS: Glucan and LNCaP cooperate in induction of cytokine synthesis by DC. LNCaP enhance IL-1ß, IL-23, IL-6, and TNF-α secretion by decreasing glucan-dependent NADPH oxidase activity, whereas glucan increases IL-12 production through NADPH oxidase-unrelated mechanisms. This cooperation is essential to elicit a substantial NK cells and CD4(+) lymphocytes activity, pointing out a potential relevance of glucan in prostate cancer therapy.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Glucanos/farmacologia , Fatores Imunológicos/farmacologia , Interleucina-12/biossíntese , Células Matadoras Naturais/imunologia , Neoplasias da Próstata/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Masculino , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Superóxidos/metabolismoRESUMO
Calcineurin (CN) inhibitors currently used to avoid transplant rejection block the activation of adaptive immune responses but also prevent the development of tolerance toward the graft, by directly inhibiting T cells. CN, through the transcription factors of the NFAT family, plays an important role also in the differentiation dendritic cells (DCs), the main cells responsible for the activation of T lymphocytes. Therefore, we hypothesized that the inhibition of CN only in DCs and not in T cells could be sufficient to prevent T cell responses, while allowing for the development of tolerance. Here, we show that inhibition of CN/NFAT pathway in innate myeloid cells, using a new nanoconjugate capable of selectively targeting phagocytes in vivo, protects against graft rejection and induces a longer graft acceptance compared to common CN inhibitors. We propose a new generation of nanoparticles-based selective immune suppressive agents for a better control of transplant acceptance.
RESUMO
BACKGROUND: Glioblastoma multiforme (GBM) is an incurable tumor, with a median survival rate of only 14-15 months. Along with heterogeneity and unregulated growth, a central matter in dealing with GBMs is cell invasiveness. Thus, improving prognosis requires finding new agents to inhibit key multiple pathways, even simultaneously. A subset of GBM stem-like cells (GSCs) may account for tumorigenicity, representing, through their pathways, the proper cellular target in the therapeutics of glioblastomas. GSCs cells are routinely enriched and expanded due to continuous exposure to specific growth factors, which might alter some of their intrinsic characteristic and hide therapeutically relevant traits. METHODS: By removing exogenous growth factors stimulation, here we isolated and characterized a subset of GSCs with a "mitogen-independent" phenotype (I-GSCs) from patient's tumor specimens. Differential side-by-side comparative functional and molecular analyses were performed either in vitro or in vivo on these cells versus their classical growth factor (GF)-dependent counterpart (D-GSCs) as well as their tissue of origin. This was performed to pinpoint the inherent GSCs' critical regulators, with particular emphasis on those involved in spreading and tumorigenic potential. Transcriptomic fingerprints were pointed out by ANOVA with Benjamini-Hochberg False Discovery Rate (FDR) and association of copy number alterations or somatic mutations was determined by comparing each subgroup with a two-tailed Fisher's exact test. The combined effects of interacting in vitro and in vivo with two emerging GSCs' key regulators, such as Wnt5a and EphA2, were then predicted under in vivo experimental settings that are conducive to clinical applications. In vivo comparisons were carried out in mouse-human xenografts GBM model by a hierarchical linear model for repeated measurements and Dunnett's multiple comparison test with the distribution of survival compared by Kaplan-Meier method. RESULTS: Here, we assessed that a subset of GSCs from high-grade gliomas is self-sufficient in the activation of regulatory growth signaling. Furthermore, while constitutively present within the same GBM tissue, these GF-independent GSCs cells were endowed with a distinctive functional and molecular repertoire, defined by highly aggressive Wnt5aHigh/EphA2Low profile, as opposed to Wnt5aLow/EphA2High expression in sibling D-GSCs. Regardless of their GBM subtype of origin, I-GSCs, are endowed with a raised in vivo tumorigenic potential than matched D-GSCs, which were fast-growing ex-vivo but less lethal and invasive in vivo. Also, the malignant I-GSCs' transcriptomic fingerprint faithfully mirrored the original tumor, bringing into evidence key regulators of invasiveness, angiogenesis and immuno-modulators, which became candidates for glioma diagnostic/prognostic markers and therapeutic targets. Particularly, simultaneously counteracting the activity of the tissue invasive mediator Wnt5a and EphA2 tyrosine kinase receptor addictively hindered GSCs' tumorigenic and invasive ability, thus increasing survival. CONCLUSION: We show how the preservation of a mitogen-independent phenotype in GSCs plays a central role in determining the exacerbated tumorigenic and high mobility features distinctive of GBM. The exploitation of the I-GSCs' peculiar features shown here offers new ways to identify novel, GSCs-specific effectors, whose modulation can be used in order to identify novel, potential molecular therapeutic targets. Furthermore, we show how the combined use of PepA, the anti-Wnt5a drug, and of ephrinA1-Fc to can hinder GSCs' lethality in a clinically relevant xenogeneic in vivo model thus being conducive to perspective, novel combinatorial clinical application.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Mitógenos/metabolismo , Mitógenos/farmacologia , Mitógenos/uso terapêutico , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismoRESUMO
COVID-19 has proven to be particularly serious and life-threatening for patients presenting with pre-existing pathologies. Patients affected by rheumatic musculoskeletal disease (RMD) are likely to have impaired immune responses against SARS-CoV-2 infection due to their compromised immune system and the prolonged use of disease-modifying anti-rheumatic drugs (DMARDs), which include conventional synthetic (cs) DMARDs or biologic and targeted synthetic (b/ts) DMARDs. To provide an integrated analysis of the immune response following SARS-CoV-2 infection in RMD patients treated with different classes of DMARDs we carried out an immunological analysis of the antibody responses toward SARS-CoV-2 nucleocapsid and RBD proteins and an extensive immunophenotypic analysis of the major immune cell populations. We showed that RMD individuals under most DMARD treatments mount a sustained antibody response to the virus, with neutralizing activity. In addition, they displayed a sizable percentage of effector T and B lymphocytes. Among b-DMARDs, we found that anti-TNFα treatments are more favorable drugs to elicit humoral and cellular immune responses as compared to CTLA4-Ig and anti-IL6R inhibitors. This study provides a whole picture of the humoral and cellular immune responses in RMD patients by reassuring the use of DMARD treatments during COVID-19. The study points to TNF-α inhibitors as those DMARDs permitting elicitation of functional antibodies to SARS-CoV-2 and adaptive effector populations available to counteract possible re-infections.
Assuntos
Antirreumáticos , Tratamento Farmacológico da COVID-19 , Doenças Reumáticas , Antirreumáticos/uso terapêutico , Humanos , Imunossupressores/uso terapêutico , Doenças Reumáticas/tratamento farmacológico , SARS-CoV-2RESUMO
Innate immune responses to Gram-negative bacteria depend on the recognition of lipopolysaccharide (LPS) by a receptor complex that includes CD14 and TLR4. In dendritic cells (DCs), CD14 enhances the activation not only of TLR4 but also that of the NFAT family of transcription factors, which suppresses cell survival and promotes the production of inflammatory mediators. NFAT activation requires Ca2+ mobilization. In DCs, Ca2+ mobilization in response to LPS depends on phospholipase C γ2 (PLCγ2), which produces inositol 1,4,5-trisphosphate (IP3). Here, we showed that the IP3 receptor 3 (IP3R3) and ITPKB, a kinase that converts IP3 to inositol 1,3,4,5-tetrakisphosphate (IP4), were both necessary for Ca2+ mobilization and NFAT activation in mouse and human DCs. A pool of IP3R3 was located on the plasma membrane of DCs, where it colocalized with CD14 and ITPKB. Upon LPS binding to CD14, ITPKB was required for Ca2+ mobilization through plasma membrane-localized IP3R3 and for NFAT nuclear translocation. Pharmacological inhibition of ITPKB in mice reduced both LPS-induced tissue swelling and the severity of inflammatory arthritis to a similar extent as that induced by the inhibition of NFAT using nanoparticles that delivered an NFAT-inhibiting peptide specifically to phagocytic cells. Our results suggest that ITPKB may represent a promising target for anti-inflammatory therapies that aim to inhibit specific DC functions.
Assuntos
Cálcio/metabolismo , Células Dendríticas , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Lipopolissacarídeos , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/genéticaRESUMO
The COVID-19 outbreak driven by SARS-CoV-2 has caused more than 2.5 million deaths globally, with the most severe cases characterized by over-exuberant production of immune-mediators, the nature of which is not fully understood. Interferons of the type I (IFN-I) or type III (IFN-III) families are potent antivirals, but their role in COVID-19 remains debated. Our analysis of gene and protein expression along the respiratory tract shows that IFNs, especially IFN-III, are over-represented in the lower airways of patients with severe COVID-19, while high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity; also, IFN expression varies with abundance of the cell types that produce them. Our data point to a dynamic process of inter- and intra-family production of IFNs in COVID-19, and suggest that IFNs play opposing roles at distinct anatomical sites.
RESUMO
A series of twenty arylpiperazine derivatives of 1,7,8,9-tetrachloro-10,10-dimethoxy-4-azatricyclo[5.2.1.0(2,6)]dec-8-ene-3,5-dione have been prepared. These derivatives were tested in vitro with the aim of identifying novel lead compounds active against emergent and re-emergent human and cattle infectious diseases (AIDS, hepatitis B and C, tuberculosis, bovine viral diarrhea). In particular, these compounds were evaluated in vitro against representatives of different virus classes, such as a HIV-1 (Retrovirus), a HBV (Hepadnavirus) and the single-stranded RNA(+) viruses Yellow fever virus (YFV) and Bovine viral diarrhea virus (BVDV), both belonging to the Flaviridae. Compounds 2c, 2g and 3d showed a modest activity against CVB-2. The molecular structures of the starting imide 1 and one of propyl-piperazine derivatives, 3b, have been determined by an X-ray crystallography study.
Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Compostos Heterocíclicos com 3 Anéis/síntese química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Animais , Linhagem Celular , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Técnicas In Vitro , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura MolecularRESUMO
TLRs are a class of pattern recognition receptors (PRRs) that detect invading microbes by recognizing pathogen-associated molecular patterns (PAMPs). Upon PAMP engagement, TLRs activate a signaling cascade that leads to the production of inflammatory mediators. The localization of TLRs, either on the plasma membrane or in the endolysosomal compartment, has been considered to be a fundamental aspect to determine to which ligands the receptors bind, and which transduction pathways are induced. However, new observations have challenged this view by identifying complex trafficking events that occur upon TLR-ligand binding. These findings have highlighted the central role that endocytosis and receptor trafficking play in the regulation of the innate immune response. Here, we review the TLR4 and TLR9 transduction pathways and the importance of their different subcellular localization during the inflammatory response. Finally, we discuss the implications of TLR9 subcellular localization in autoimmunity.
Assuntos
Receptor 4 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia , Animais , Doenças Autoimunes/imunologia , Citocinas/biossíntese , Proteínas de Ligação a DNA/fisiologia , Endocitose , Granulinas/fisiologia , Proteína HMGB1/fisiologia , Humanos , Glicoproteínas de Membrana/fisiologia , Receptores de Interleucina-1/fisiologia , Transdução de Sinais , Fatores de Transcrição/fisiologiaRESUMO
The aim of this study is to identify subsets of T cells differentially represented in the circulation of patients with psoriatic arthritis and to evaluate the possibility that they can recirculate between peripheral blood and the inflamed joints. We analyzed the phenotype and cytokine expression in circulating CD8+ and CD4+ T cells in 69 subjects: 28 with cutaneous psoriasis, 15 patients with psoriatic arthritis, and 26 healthy subjects. In the circulation, the percentage of each subset was compared among the groups and correlation was calculated with the serum concentration of C-reactive protein. To investigate the migration of T cells towards the inflamed joints, we performed a transwell migration assay towards patient serum and synovial fluid. In selected patients we analyzed in parallel T cells from peripheral blood and from synovial fluid. In the circulation, we found increased percentage of CD8+ CCR6+ T cell effectors expressing CD69 and of IL-17-producing T cells in patients with psoriatic arthritis. CD8+ effector/effector memory T cells showed increased migration towards synovial fluid. Finally, in synovial fluid we found accumulation of CXCR3+ CD8+ T cells and CD69+ cells. CD4+ T cells in the two compartments shared many similarities with CD8+ T cells. The results indicate a role for memory T cell effectors in systemic and joint manifestations of psoriatic arthritis.
Assuntos
Artrite Psoriásica/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Articulações/patologia , Subpopulações de Linfócitos T/imunologia , Adulto , Idoso , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Movimento Celular , Células Cultivadas , Feminino , Humanos , Memória Imunológica , Interleucina-17/metabolismo , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Receptores CXCR3/metabolismo , Líquido Sinovial/metabolismo , Adulto JovemRESUMO
Most transcription factors were for a long time considered as undruggable targets because of the absence of binding pockets for direct targeting. HOXA9, implicated in acute myeloid leukemia, is one of them. To date, only indirect targeting of HOXA9 expression or multitarget HOX/PBX protein/protein interaction inhibitors has been developed. As an attractive alternative by inhibiting the DNA binding, we selected a series of heterocyclic diamidines as efficient competitors for the HOXA9/DNA interaction through binding as minor groove DNA ligands on the HOXA9 cognate sequence. Selected DB818 and DB1055 compounds altered HOXA9-mediated transcription in luciferase assays, cell survival, and cell cycle, but increased cell death and granulocyte/monocyte differentiation, two main HOXA9 functions also highlighted using transcriptomic analysis of DB818-treated murine Hoxa9-transformed hematopoietic cells. Altogether, these data demonstrate for the first time the propensity of sequence-selective DNA ligands to inhibit HOXA9/DNA binding both in vitro and in a murine Hoxa9-dependent leukemic cell model.
Assuntos
DNA/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Proteínas de Homeodomínio/antagonistas & inibidores , Leucemia/patologia , Modelos Biológicos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA/química , Desenho de Fármacos , Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos/química , Leucemia/genética , LigantesRESUMO
Toll-like receptor 4 (TLR4) activation is pivotal to innate immunity and has been shown to regulate proliferation and differentiation of human neural stem cells (hNSCs) in vivo. Here we study the role of TLR4 in regulating hNSC derived from the human telencephalic-diencephalic area of the fetal brain and cultured in vitro as neurospheres in compliance with Good Manifacture Procedures (GMP) guidelines. Similar batches have been used in recent clinical trials in ALS patients. We found that TLR2 and 4 are expressed in hNSCs as well as CD14 and MD-2 co-receptors, and TLR4 expression is downregulated upon differentiation. Activation of TLR4 signaling by lipopolysaccharide (LPS) has a positive effect on proliferation and/or survival while the inverse is observed with TLR4 inhibition by a synthetic antagonist. TLR4 activation promotes neuronal and oligodendrocyte differentiation and/or survival while TLR4 inhibition leads to increased apoptosis. Consistently, endogenous expression of TLR4 is retained by hNSC surviving after transplantation in ALS rats or immunocompromised mice, thus irrespectively of the neuroinflammatory environment. The characterization of downstream signaling of TLR4 in hNSCs has suggested some activation of the inflammasome pathway. This study suggests TLR4 signaling as essential for hNSC self-renewal and as a novel target for the study of neurogenetic mechanisms.
Assuntos
Proliferação de Células , Células-Tronco Neurais/metabolismo , Neurogênese , Receptor 4 Toll-Like/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/cirurgia , Animais , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Humanos , Hospedeiro Imunocomprometido , Masculino , Camundongos Nus , Células-Tronco Neurais/transplante , Ratos Transgênicos , Transdução de Sinais , Esferoides Celulares , Superóxido Dismutase-1/genéticaRESUMO
Inflammation is a pathological hallmark of Alzheimer's disease, and innate immune cells have been shown to contribute to disease pathogenesis. In two transgenic models of Alzheimer's disease (5xFAD and 3xTg-AD mice), neutrophils extravasated and were present in areas with amyloid-ß (Aß) deposits, where they released neutrophil extracellular traps (NETs) and IL-17. Aß42 peptide triggered the LFA-1 integrin high-affinity state and rapid neutrophil adhesion to integrin ligands. In vivo, LFA-1 integrin controlled neutrophil extravasation into the CNS and intraparenchymal motility. In transgenic Alzheimer's disease models, neutrophil depletion or inhibition of neutrophil trafficking via LFA-1 blockade reduced Alzheimer's disease-like neuropathology and improved memory in mice already showing cognitive dysfunction. Temporary depletion of neutrophils for 1 month at early stages of disease led to sustained improvements in memory. Transgenic Alzheimer's disease model mice lacking LFA-1 were protected from cognitive decline and had reduced gliosis. In humans with Alzheimer's disease, neutrophils adhered to and spread inside brain venules and were present in the parenchyma, along with NETs. Our results demonstrate that neutrophils contribute to Alzheimer's disease pathogenesis and cognitive impairment and suggest that the inhibition of neutrophil trafficking may be beneficial in Alzheimer's disease.