Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Math Biosci Eng ; 20(5): 9159-9178, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-37161238

RESUMO

About 6.5 million people are infected with Chagas disease (CD) globally, and WHO estimates that $ > million people worldwide suffer from ChHD. Sudden cardiac death (SCD) represents one of the leading causes of death worldwide and affects approximately 65% of ChHD patients at a rate of 24 per 1000 patient-years, much greater than the SCD rate in the general population. Its occurrence in the specific context of ChHD needs to be better exploited. This paper provides the first evidence supporting the use of machine learning (ML) methods within non-invasive tests: patients' clinical data and cardiac restitution metrics (CRM) features extracted from ECG-Holter recordings as an adjunct in the SCD risk assessment in ChHD. The feature selection (FS) flows evaluated 5 different groups of attributes formed from patients' clinical and physiological data to identify relevant attributes among 57 features reported by 315 patients at HUCFF-UFRJ. The FS flow with FS techniques (variance, ANOVA, and recursive feature elimination) and Naive Bayes (NB) model achieved the best classification performance with 90.63% recall (sensitivity) and 80.55% AUC. The initial feature set is reduced to a subset of 13 features (4 Classification; 1 Treatment; 1 CRM; and 7 Heart Tests). The proposed method represents an intelligent diagnostic support system that predicts the high risk of SCD in ChHD patients and highlights the clinical and CRM data that most strongly impact the final outcome.


Assuntos
Morte Súbita Cardíaca , Aprendizado de Máquina , Humanos , Teorema de Bayes , Morte Súbita Cardíaca/epidemiologia , Medição de Risco , Eletrocardiografia
2.
Med Eng Phys ; 35(8): 1105-15, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23273484

RESUMO

This paper presents an innovative approach for T-wave peak detection and subsequent T-wave end location in 12-lead paced ECG signals based on a mathematical model of a skewed Gaussian function. Following the stage of QRS segmentation, we establish search windows using a number of the earliest intervals between each QRS offset and subsequent QRS onset. Then, we compute a template based on a Gaussian-function, modified by a mathematical procedure to insert asymmetry, which models the T-wave. Cross-correlation and an approach based on the computation of Trapezium's area are used to locate, respectively, the peak and end point of each T-wave throughout the whole raw ECG signal. For evaluating purposes, we used a database of high resolution 12-lead paced ECG signals, recorded from patients with ischaemic cardiomyopathy (ICM) in the University Hospitals of Leicester NHS Trust, UK, and the well-known QT database. The average T-wave detection rates, sensitivity and positive predictivity, were both equal to 99.12%, for the first database, and, respectively, equal to 99.32% and 99.47%, for QT database. The average time errors computed for T-wave peak and T-wave end locations were, respectively, -0.38±7.12 ms and -3.70±15.46 ms, for the first database, and 1.40±8.99 ms and 2.83±15.27 ms, for QT database. The results demonstrate the accuracy, consistency and robustness of the proposed method for a wide variety of T-wave morphologies studied.


Assuntos
Cardiomiopatias/diagnóstico , Diagnóstico por Computador/métodos , Eletrocardiografia/métodos , Frequência Cardíaca , Isquemia Miocárdica/diagnóstico , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Humanos , Isquemia Miocárdica/complicações , Isquemia Miocárdica/fisiopatologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Med Eng Phys ; 34(9): 1236-46, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22226589

RESUMO

The QRS detection and segmentation processes constitute the first stages of a greater process, e.g., electrocardiogram (ECG) feature extraction. Their accuracy is a prerequisite to a satisfactory performance of the P and T wave segmentation, and also to the reliability of the heart rate variability analysis. This work presents an innovative approach of QRS detection and segmentation and the detailed results of the proposed algorithm based on First-Derivative, Hilbert and Wavelet Transforms, adaptive threshold and an approach of surface indicator. The method combines the adaptive threshold, Hilbert and Wavelet Transforms techniques, avoiding the whole ECG signal preprocessing. After each QRS detection, the computation of an indicator related to the area covered by the QRS complex envelope provides the detection of the QRS onset and offset. The QRS detection proposed technique is evaluated based on the well-known MIT-BIH Arrhythmia and QT databases, obtaining the average sensitivity of 99.15% and the positive predictability of 99.18% for the first database, and 99.75% and 99.65%, respectively, for the second one. The QRS segmentation approach is evaluated on the annotated QT database with the average segmentation errors of 2.85±9.90ms and 2.83±12.26ms for QRS onset and offset, respectively. Those results demonstrate the accuracy of the developed algorithm for a wide variety of QRS morphology and the adaptation of the algorithm parameters to the existing QRS morphological variations within a single record.


Assuntos
Eletrocardiografia/métodos , Processamento de Sinais Assistido por Computador , Análise de Ondaletas , Algoritmos , Reações Falso-Negativas , Reações Falso-Positivas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA