Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 18(10): 1105-1111, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358941

RESUMO

A critical current density on stripping is identified that results in dendrite formation on plating and cell failure. When the stripping current density removes Li from the interface faster than it can be replenished, voids form in the Li at the interface and accumulate on cycling, increasing the local current density at the interface and ultimately leading to dendrite formation on plating, short circuit and cell death. This occurs even when the overall current density is considerably below the threshold for dendrite formation on plating. For the Li/Li6PS5Cl/Li cell, this is 0.2 and 1.0 mA cm-2 at 3 and 7 MPa pressure, respectively, compared with a critical current for plating of 2.0 mA cm-2 at both 3 and 7 MPa. The pressure dependence on stripping indicates that creep rather than Li diffusion is the dominant mechanism transporting Li to the interface. The critical stripping current is a major factor limiting the power density of Li anode solid-state cells. Considerable pressure may be required to achieve even modest power densities in solid-state cells.

2.
ACS Appl Mater Interfaces ; 13(19): 22708-22716, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33960785

RESUMO

Void formation at the Li/ceramic electrolyte interface of an all-solid-state battery on discharge results in high local current densities, dendrites on charge, and cell failure. Here, we show that such voiding is reduced at the Li/Li6PS5Cl interface at elevated temperatures, sufficient to increase the critical current before voiding and cell failure from <0.25 mA cm-2 at 25 °C to 0.25 mA cm-2 at 60 °C and 0.5 mA cm-2 at 80 °C under a relatively low stack-pressure of 1 MPa. Increasing the stack-pressure to 5 MPa and temperature to 80 °C permits stable cycling at 2.5 mA cm-2. It is also shown that the charge-transfer resistance at the Li/Li6PS5Cl interface depends on pressure and temperature, with relatively high pressures required to maintain low charge-transfer resistance at -20 °C. These results are consistent with the plastic deformation of Li metal dominating the performance of the Li anode, posing challenges for the implementation of solid-state cells with Li anodes.

3.
ACS Appl Mater Interfaces ; 12(8): 9277-9291, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32040288

RESUMO

All-solid-state batteries (ASSBs) present a promising route toward safe and high-power battery systems in order to meet the future demands in the consumer and automotive market. Composite cathodes are one way to boost the energy density of ASSBs compared to thin-film configurations. In this manuscript, we investigate composites consisting of ß-Li3PS4 (ß-LPS) solid electrolyte and high-energy Li(Ni0.6Mn0.2Co0.2)O2 (NMC622). The fabricated cells show a good cycle life with a satisfactory capacity retention. Still, the cathode utilization is below the values reported in the literature for systems with liquid electrolytes. The common understanding is that interface processes between the active material and solid electrolyte are responsible for the reduced performance. In order to throw some light on this topic, we perform 3D microstructure-resolved simulations on virtual samples obtained via X-ray tomography. Through this approach, we are able to correlate the composite microstructure with electrode performance and impedance. We identify the low electronic conductivity in the fully lithiated NMC622 as material inherent restriction preventing high cathode utilization. Moreover, we find that geometrical properties and morphological changes of the microstructure interact with the internal and external interfaces, significantly affecting the capacity retention at higher currents.

4.
ACS Appl Mater Interfaces ; 12(1): 678-685, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31815414

RESUMO

Three-electrode studies coupled with tomographic imaging of the Na/Na-ß″-alumina interface reveal that voids form in the Na metal at the interface on stripping and they accumulate on cycling, leading to increasing interfacial current density, dendrite formation on plating, short circuit, and cell failure. The process occurs above a critical current for stripping (CCS) for a given stack pressure, which sets the upper limit on current density that avoids cell failure, in line with results for the Li/solid-electrolyte interface. The pressure required to avoid cell failure varies linearly with current density, indicating that Na creep rather than diffusion per se dominates Na transport to the interface and that significant pressures are required to prevent cell death, >9 MPa at 2.5 mA·cm-2.

5.
Sci Rep ; 9(1): 7416, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092837

RESUMO

The cortex of the femoral neck is a key structural element of the human body, yet there is not a reliable metric for predicting the mechanical properties of the bone in this critical region. This study explored the use of a range of non-destructive metrics to measure femoral neck cortical bone stiffness at the millimetre length scale. A range of testing methods and imaging techniques were assessed for their ability to measure or predict the mechanical properties of cortical bone samples obtained from the femoral neck of hip replacement patients. Techniques that can potentially be applied in vivo to measure bone stiffness, including computed tomography (CT), bulk wave ultrasound (BWUS) and indentation, were compared against in vitro techniques, including compression testing, density measurements and resonant ultrasound spectroscopy. Porosity, as measured by micro-CT, correlated with femoral neck cortical bone's elastic modulus and ultimate compressive strength at the millimetre length scale. Large-tip spherical indentation also correlated with bone mechanical properties at this length scale but to a lesser extent. As the elastic mechanical properties of cortical bone correlated with porosity, we would recommend further development of technologies that can safely measure cortical porosity in vivo.


Assuntos
Osso Cortical/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Força Compressiva , Osso Cortical/fisiologia , Osso Cortical/ultraestrutura , Feminino , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/fisiologia , Colo do Fêmur/ultraestrutura , Humanos , Masculino , Pessoa de Meia-Idade , Porosidade , Tomografia Computadorizada por Raios X , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA