Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Org Biomol Chem ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884368

RESUMO

Muramyl dipeptide (MDP) is the smallest essential peptidoglycan substructure capable of promoting both innate and adaptive immune responses. Herein, we report on the design, synthesis, and in vivo study of the adjuvant properties of two novel MDP analogs containing an achiral adamantyl moiety attached to the desmuramyl dipeptide (DMP) pharmacophore and additionally modified by one mannosyl subunit (derivative 7) or two mannosyl subunits (derivative 11). Mannose substructures were introduced in order to assess how the degree of mannosylation affects the immune response and nucleotide-binding oligomerization-domain-containing protein 2 (NOD2) binding affinity, compared to the reference compound ManAdDMP. Both mannosylated MDP analogs showed improved immunomodulating properties, while the di-mannosylated derivative 11 displayed the highest, statistically significant increase in anti-OVA IgG production. In this study, for the first time, the di-mannosylated DMP derivative was synthesized and immunologically evaluated. Derivative 11 stimulates a Th-2-polarized type of immune reaction, similar to the reference compound ManAdDMP and MDP. Molecular dynamics (MD) simulations demonstrate that 11 has a higher NOD2 binding affinity than 7, indicating that introducing the second mannose significantly contributes to the binding affinity. Mannose interacts with key amino acid residues from the LRR hydrophobic pocket of the NOD2 receptor and loop 2.

2.
Nucleic Acids Res ; 50(7): 4029-4041, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35357484

RESUMO

Aminoacyl-tRNA synthetases (AARS) translate the genetic code by loading tRNAs with the cognate amino acids. The errors in amino acid recognition are cleared at the AARS editing domain through hydrolysis of misaminoacyl-tRNAs. This ensures faithful protein synthesis and cellular fitness. Using Escherichia coli isoleucyl-tRNA synthetase (IleRS) as a model enzyme, we demonstrated that the class I editing domain clears the non-cognate amino acids well-discriminated at the synthetic site with the same rates as the weakly-discriminated fidelity threats. This unveiled low selectivity suggests that evolutionary pressure to optimize the rates against the amino acids that jeopardize translational fidelity did not shape the editing site. Instead, we propose that editing was shaped to safeguard cognate aminoacyl-tRNAs against hydrolysis. Misediting is prevented by the residues that promote negative catalysis through destabilisation of the transition state comprising cognate amino acid. Such powerful design allows broad substrate acceptance of the editing domain along with its exquisite specificity in the cognate aminoacyl-tRNA rejection. Editing proceeds by direct substrate delivery to the editing domain (in cis pathway). However, we found that class I IleRS also releases misaminoacyl-tRNAIle and edits it in trans. This minor editing pathway was up to now recognized only for class II AARSs.


Assuntos
Aminoacil-tRNA Sintetases , Edição de RNA , Aminoácidos/genética , Aminoacil-tRNA Sintetases/metabolismo , Catálise , Escherichia coli/metabolismo , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163835

RESUMO

Histamine levels in the human brain are controlled by rather peculiar metabolic pathways. In the first step, histamine is enzymatically methylated at its imidazole Nτ atom, and the produced N-methylhistamine undergoes an oxidative deamination catalyzed by monoamine oxidase B (MAO-B), as is common with other monoaminergic neurotransmitters and neuromodulators of the central nervous system. The fact that histamine requires such a conversion prior to oxidative deamination is intriguing since MAO-B is known to be relatively promiscuous towards monoaminergic substrates; its in-vitro oxidation of N-methylhistamine is about 10 times faster than that for histamine, yet this rather subtle difference appears to be governing the decomposition pathway. This work clarifies the MAO-B selectivity toward histamine and N-methylhistamine by multiscale simulations of the rate-limiting hydride abstraction step for both compounds in the gas phase, in aqueous solution, and in the enzyme, using the established empirical valence bond methodology, assisted by gas-phase density functional theory (DFT) calculations. The computed barriers are in very good agreement with experimental kinetic data, especially for relative trends among systems, thereby reproducing the observed MAO-B selectivity. Simulations clearly demonstrate that solvation effects govern the reactivity, both in aqueous solution as well as in the enzyme although with an opposing effect on the free energy barrier. In the aqueous solution, the transition-state structure involving histamine is better solvated than its methylated analog, leading to a lower barrier for histamine oxidation. In the enzyme, the higher hydrophobicity of N-methylhistamine results in a decreased number of water molecules at the active side, leading to decreased dielectric shielding of the preorganized catalytic electrostatic environment provided by the enzyme. This renders the catalytic environment more efficient for N-methylhistamine, giving rise to a lower barrier relative to histamine. In addition, the transition state involving N-methylhistamine appears to be stabilized by the surrounding nonpolar residues to a larger extent than with unsubstituted histamine, contributing to a lower barrier with the former.


Assuntos
Histamina/metabolismo , Metilistaminas/metabolismo , Monoaminoxidase/metabolismo , Encéfalo/metabolismo , Simulação por Computador , Teoria da Densidade Funcional , Histamina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metilistaminas/química , Estrutura Molecular , Oxirredução , Especificidade por Substrato
4.
Org Biomol Chem ; 19(32): 7001-7012, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34095941

RESUMO

Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular receptor that recognizes the bacterial peptidoglycan fragment muramyl dipeptide (MDP). Our group has synthesized and biologically evaluated desmuramyl peptides containing adamantane and its mannose derivatives. The most active mannosylated derivative, ManAdDMP (Man-OCH2-d-(1-Ad)Gly-l-Ala-d-isoGln), is further characterized in silico in this study. We built intact model structures of the rabbit NOD2 protein, whose crystal structure lacks seven loops, and explored the binding of ManAdDMP. Two main binding sites for ManAdDMP are located within the nucleotide-binding oligomerization domain (NOD) and C-terminal leucine-rich repeat (LRR) domains. Our analysis shows that the dipeptide isoGln moiety of ManAdDMP significantly contributes to the binding, whereas the mannose moiety interacts with modelled loop 7, which is a part of the NOD helical domain 2. The presented results point to the importance of loops 2 and 7 in ligand recognition that could be useful for further investigation of NOD2 activation/inhibition.


Assuntos
Simulação de Dinâmica Molecular
5.
Chemistry ; 23(12): 2915-2925, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28052533

RESUMO

Monoamine oxidase (MAO) enzymes catalyze the degradation of a very broad range of biogenic and dietary amines including many neurotransmitters in the brain, whose imbalance is extensively linked with the biochemical pathology of various neurological disorders. Although sharing around 70 % sequence identity, both MAO A and B isoforms differ in substrate affinities and inhibitor sensitivities. Inhibitors that act on MAO A are used to treat depression, due to their ability to raise serotonin concentrations, whereas MAO B inhibitors decrease dopamine degradation and improve motor control in patients with Parkinson disease. Despite this functional importance, the factors affecting MAO selectivity are poorly understood. Here, we used a combination of molecular dynamics (MD) simulations, molecular mechanics with Poisson-Boltzmann and surface area solvation (MM-PBSA) binding free energy evaluations, and quantum mechanical (QM) cluster calculations to address the unexpected, yet challenging MAO B selectivity for N-methylhistamine (NMH) over histamine (HIS), differing only in a single methyl group distant from the reactive ethylamino center. This study shows that a dominant selectivity contribution is offered by a lower activation free energy for NMH by 2.6 kcal mol-1 , in excellent agreement with the experimental ΔΔG≠EXP =1.4 kcal mol-1 , together with a more favorable reaction exergonicity and active-site binding. This study also confirms the hydrophobic nature of the MAO B active site and underlines the important role of Ile199, Leu171, and Leu328 in properly orienting substrates for the reaction.


Assuntos
Histamina/metabolismo , Metilistaminas/metabolismo , Monoaminoxidase/metabolismo , Sítios de Ligação , Biocatálise , Domínio Catalítico , Histamina/química , Humanos , Metilistaminas/química , Simulação de Dinâmica Molecular , Monoaminoxidase/química , Teoria Quântica , Termodinâmica
6.
J Org Chem ; 81(17): 7612-25, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27494395

RESUMO

Pyridine substituted with one and two bicyclic guanidine groups has been studied as a potential source of superbases. 2-{hpp}C5H4N (I) and 2,6-{hpp}2C5H3N (II) (hppH = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine) were protonated using [HNEt3][BPh4] to afford [I-H][BPh4] (1a), [II-H][BPh4] (2), and [II-H2][BPh4]2 (3). Solution-state (1)H and (15)N NMR spectroscopy shows a symmetrical cation in 2, indicating a facile proton-exchange process in solution. Solid-state (15)N NMR data differentiates between the two groups, indicating a mixed guanidine/guanidinium. X-ray diffraction data are consistent with protonation at the imine nitrogen, confirmed for 1a by single-crystal neutron diffraction. The crystal structure of 1a shows association of two [I-H](+) cations within a cage of [BPh4](-) anions. Computational analysis performed in the gas phase and in MeCN solution shows that the free energy barrier to transfer a proton between imino centers in [II-H](+) is 1 order of magnitude lower in MeCN than in the gas phase. The results provide evidence that linking hpp groups with the pyridyl group stabilizes the protonation center, thereby increasing the intrinsic basicity in the gas phase, while the bulk prevents efficient cation solvation, resulting in diminished pKa(MeCN) values. Spectrophotometrically measured pKa values are in excellent agreement with calculated values and confirm that I and II are superbases in solution.

7.
Chemistry ; 21(34): 12121-8, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26178864

RESUMO

Supramolecular ionogels were prepared by the gelation of room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4 ]) with (S,S)-bis(leucinol)oxalamide. Remarkably, the ionic conductivity of solutions and ionogels with low gelator concentrations is higher than that of neat [BMIm][BF4 ]. On the basis of molecular dynamics simulations and quantum mechanical calculations, the origin of this phenomenon is attributed to the higher affinity of gelator molecules towards [BF4 ](-) ions, which reduces the electrostatic attraction between [BMIm](+) and [BF4 ](-) and thus increases their mobility. With increasing gelator concentration, the ionic conductivity decreases due to the formation of a denser gelator matrix, which hinders the pathways for ionic transport. However, even for very dense ionogels, this decrease is less than one order of magnitude relative to neat [BMIm][BF4 ], and thus they can be classified as highly conductive materials with strong potential for application as functional electrolytes.

8.
Phys Chem Chem Phys ; 17(29): 19030-8, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26129823

RESUMO

Acyl carrier proteins (ACPs) are among the most promiscuous proteins in terms of protein-protein interactions and it is quite puzzling how ACPs select the correct partner between many possible upstream and downstream binding proteins. To address this question, we performed molecular dynamics simulations on dimeric Bradyrhizobium japonicum Gly:CP ligase 1 to inspect the origin of its selectivity towards the three types of carrier proteins, namely holoCP, apoCP, and holoCP-Gly, which only differ in the attached prosthetic group. In line with experiments, MM-GBSA analysis revealed that the ligase preferentially binds the holoCP form to both subunits with the binding free energies of -20.7 and -19.1 kcal mol(-1), while the apoCP form, without the prosthetic group, is also recognized, but the binding values of -9.2 and -3.6 kcal mol(-1) suggest that there is no competition for the ligase binding as long as the holoCP is present. After the prosthetic group becomes glycylated, the holoCP-Gly dissociates from the ligase, as supported by its endergonic binding free energies of 2.9 and 20.9 kcal mol(-1). Our results indicate that these affinity differences are influenced by three aspects: the form of the prosthetic group and the specific non-polar hydrophobic interactions, as well as charge complementarity dominantly manifested through Arg220-Glu53 ion pair within the binding region among proteins. A careful examination of the bonding patterns within the ligase active site elucidated the interactions with Arg258, Asp215 and Tyr132 as being predominant in stabilizing the prosthetic group, which are significantly diminished upon glycation, thus promoting complex dissociation.


Assuntos
Proteínas de Transporte/química , Ligases/química , Simulação de Dinâmica Molecular , Bradyrhizobium/enzimologia , Proteínas de Transporte/metabolismo , Ligases/metabolismo , Ligação Proteica
9.
J Mol Graph Model ; 123: 108528, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37269807

RESUMO

Norvaline is a straight-chain, hydrophobic, non-proteinogenic amino acid, isomeric with valine. Both amino acids can be misincorporated into proteins at isoleucine positions by isoleucyl-tRNA synthetase when the mechanisms of translation fidelity are impaired. Our previous study showed that the proteome-wide substitution of isoleucine with norvaline resulted in higher toxicity in comparison to the proteome-wide substitution of isoleucine with valine. Although mistranslated proteins/peptides are considered to have non-native structures responsible for their toxicity, the observed difference in protein stability between norvaline and valine misincorporation has not yet been fully understood. To examine the observed effect, we chose the model peptide with three isoleucines in the native structure, introduced selected amino acids at isoleucine positions and applied molecular dynamics simulations at different temperatures. The obtained results showed that norvaline has the highest destructive effect on the ß-sheet structure and suggested that the higher toxicity of norvaline over valine is predominantly due to the misincorporation within the ß-sheet secondary elements.


Assuntos
Aminoácidos , Isoleucina , Aminoácidos/química , Isoleucina/química , Proteoma/metabolismo , Escherichia coli/metabolismo , Valina/química , Peptídeos/metabolismo
10.
Chemosphere ; 313: 137574, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36528155

RESUMO

Cardiovascular pharmaceuticals (CVPs) are globally present in inland waters and have also been found in the sediment and plasma of fish from the Sava River, Croatia. Based on the previous research, CVPs amiodarone (AMI), ramipril (RAM), simvastatin (SIM), and verapamil (VER) have been selected for this study. Their effect has been investigated, individually and in a mixture, on the development of the zebrafish embryo Danio rerio (Hamilton, 1822) within the first 96 h of development. Upon exposure to environmentally relevant concentrations of tested CVPs (0.1, 1, and 10 µg/L) zebrafish survival and development as apparent from observed morphological abnormalities, heartbeat rates and changes in behavior, hatching success, larval length and oxidative stress level were monitored. The CVP causing the highest mortality and pathological changes was SIM (1 and 10 µg/L), which corresponds well with the observed effects during zebrafish exposure to CVPs' mixtures (4 and 40 µg/L). All pharmaceuticals affected cardiac function and decreased heart rate. SIM (1 µg/L), VER and RAM (10 µg/L) decreased larval length, while induced oxidative stress was recorded in the SIM- and VER-exposed specimens. Behavioral alterations of zebrafish were observed only in AMI-treated group (10 µg/L). Our amino acid sequence comparison and structural and docking analysis showed a highly conserved binding site between human and zebrafish HMG-CoA reductase for SIM and its main metabolite simvastatin acid. Using these ecotoxicological bioassays on a zebrafish model with particular emphasis on sublethal endpoints, the risk of CVPs, especially statins, for fish in inland waters has been identified.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Poluentes Químicos da Água , Humanos , Animais , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Peixe-Zebra/metabolismo , Rios , Larva , Preparações Farmacêuticas , Poluentes Químicos da Água/metabolismo , Embrião não Mamífero
11.
Int J Biol Macromol ; 192: 692-700, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655583

RESUMO

We have recently identified BEN1 as a protein interactor of seryl-tRNA synthetase (SerRS) from model plant Arabidopsis thaliana. BEN1 contains an NADP+ binding domain and possesses acidic N-terminal extension essential for interaction with A. thaliana SerRS. This extension, specific for BEN1 homologues from Brassicaceae family, is solvent-exposed and distant to the nucleotide-binding site. We prepared a truncated BEN1 variant ΔN17BEN1 lacking the first 17 amino acid of this N-terminal extension as well as full-length BEN1 to investigate how the truncation affects the binding affinity towards coenzyme NADP+. By performing microscale thermophoresis (MST) experiments we have shown that both BEN1 variants bind the NADP+ cofactor, however, truncated BEN1 showed 34-fold higher affinity towards NADP+ indicating that its core protein structure is not just preserved but it binds NADP+ even stronger. To further corroborate the obtained results, we opted for a computational approach based on classical molecular dynamics simulations of both complexes. Our results have shown that both truncated and intact BEN1 variants form the same number of interactions with the NADP+ cofactor; however, it was the interaction occupancy that was affected. Namely, three independent MD simulations showed that the ΔN17BEN1 variant in complex with NADP+ has significantly higher interaction occupancy thus binds NADP+ with more than one order of magnitude higher affinity. Contrary to our expectations, the truncation of this distant region that does not communicate with the nucleotide-binding site didn't result in the gain of interaction but affected the intrinsic conformational dynamics which in turn fine-tuned the binding affinity by increasing the interaction occupancy and strength of the key conserved cation-π interaction between Arg69 and adenine of NADP+ and hydrogen bond between Ser244 and phosphate of NADP+.


Assuntos
Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Ligação de Hidrogênio , Ligação Proteica , Relação Estrutura-Atividade
12.
J Cheminform ; 13(1): 45, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193251

RESUMO

BACKGROUND: Partial atomic charges find many applications in computational chemistry, chemoinformatics, bioinformatics, and nanoscience. Currently, frequently used methods for charge calculation are the Electronegativity Equalization Method (EEM), Charge Equilibration method (QEq), and Extended QEq (EQeq). They all are fast, even for large molecules, but require empirical parameters. However, even these advanced methods have limitations-e.g., their application for peptides, proteins, and other macromolecules is problematic. An empirical charge calculation method that is promising for peptides and other macromolecular systems is the Split-charge Equilibration method (SQE) and its extension SQE+q0. Unfortunately, only one parameter set is available for these methods, and their implementation is not easily accessible. RESULTS: In this article, we present for the first time an optimized guided minimization method (optGM) for the fast parameterization of empirical charge calculation methods and compare it with the currently available guided minimization (GDMIN) method. Then, we introduce a further extension to SQE, SQE+qp, adapted for peptide datasets, and compare it with the common approaches EEM, QEq EQeq, SQE, and SQE+q0. Finally, we integrate SQE and SQE+qp into the web application Atomic Charge Calculator II (ACC II), including several parameter sets. CONCLUSION: The main contribution of the article is that it makes SQE methods with their parameters accessible to the users via the ACC II web application ( https://acc2.ncbr.muni.cz ) and also via a command-line application. Furthermore, our improvement, SQE+qp, provides an excellent solution for peptide datasets. Additionally, optGM provides comparable parameters to GDMIN in a markedly shorter time. Therefore, optGM allows us to perform parameterizations for charge calculation methods with more parameters (e.g., SQE and its extensions) using large datasets.

13.
Sci Rep ; 11(1): 2527, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510260

RESUMO

Amazonian wildfires in 2019 have raised awareness about rainforest burning due to increased emissions of particulate matter and carbon. In the context of these emissions, by-products of lignin thermal degradation (i.e. methoxyphenols) are often neglected. Methoxyphenols entering the atmosphere may form intermediates with currently unknown reaction mechanisms and toxicity. This study for the first time provides a comprehensive insight into the impact of lignin degradation products [guaiacol, catechol], and their nitrated intermediates [4-nitrocatechol, 4,6-dinitroguaiacol, 5-nitroguaiacol] on zebrafish Danio rerio. Results revealed 4-nitrocatechol and catechol as the most toxic, followed by 4,6DNG > 5NG > GUA. The whole-organism bioassay integrated with molecular modeling emphasized the potential of methoxyphenols to inhibit tyrosinase, lipoxygenase, and carbonic anhydrase, consequently altering embryonic development (i.e. affected sensorial, skeletal, and physiological parameters, pigmentation formation failure, and non-hatching of larvae). The whole-organism bioassay integrated with in silico approach confirmed the harmful effects of lignin degradation products and their intermediates on aquatic organisms, emphasizing the need for their evaluation within ecotoxicity studies focused on aquatic compartments.


Assuntos
Biomassa , Poluição Ambiental/efeitos adversos , Incêndios Florestais , Animais , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Modelos Animais , Modelos Moleculares , Relação Estrutura-Atividade , Testes de Toxicidade , Peixe-Zebra
14.
Int J Biol Macromol ; 158: 222-230, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32348859

RESUMO

Two extracellular enzymes of the SGNH hydrolase superfamily reveal highly homologous 3D structures, but act on different substrates; one is a true phospholipase A1 from Streptomyces albidoflavus (SaPLA1, EC: 3.1.1.32, PDB code: 4HYQ), whereas the promiscuous enzyme from Streptomyces rimosus (SrLip, EC: 3.1.1.3, PDB code: 5MAL) exhibits lipase, phospholipase, esterase, thioesterase, and Tweenase activities. To get insight into binding modes of phospholipid and triglyceride substrates in both enzymes and understand their chain-length preferences, we opted for computational approach based on in silico prepared enzyme-substrate complexes. Docking procedure and molecular dynamics simulations at microsecond time scale were applied. The modelled complexes of SaPLA1 and SrLip enzymes revealed substrate accommodation: a) the acyl-chain attached to sn-1 position fits into the hydrophobic pocket, b) the acyl-chain attached to sn-2 position fits in the hydrophobic cleft, whereas c) the sn-3 bound acyl chain of the triglyceride or polar head of the glycerophospholipid fits into the binding groove. Moreover, our results pinpointed subtle amino acid differences in the hydrophobic pockets of these two enzymes which accommodate the acyl chain attached to sn-1 position of glycerol to be responsible for the chain length preference. Slight differences in the binding grooves of SaPLA1 and SrLip, which accommodate the acyl chain attached to sn-3 position are responsible for exclusive phospholipase and both phospholipase/lipase activities of these two enzymes, respectively. The results of modelling correlate with the experimentally obtained kinetic parameters given in the literature and are important for protein engineering that aims to obtain a variant of enzyme, which would preferably act on the substrate of interest.

15.
ACS Omega ; 3(4): 3665-3674, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023875

RESUMO

Diamine oxidase (DAO) is an enzyme involved in the regulation of cell proliferation and the immune response. This enzyme performs oxidative deamination in the catabolism of biogenic amines, including, among others, histamine, putrescine, spermidine, and spermine. The mechanistic details underlying the reductive half-reaction of the DAO-catalyzed oxidative deamination which leads to the reduced enzyme cofactor and the aldehyde product are, however, still under debate. The catalytic mechanism was proposed to involve a prototropic shift from the substrate-Schiff base to the product-Schiff base, which includes the rate-limiting cleavage of the Cα-H bond by the conserved catalytic aspartate. Our detailed mechanistic study, performed using a combined quantum chemical cluster approach with empirical valence bond simulations, suggests that the rate-limiting cleavage of the Cα-H bond involves direct hydride transfer to the topaquinone cofactor-a mechanism that does not involve the formation of a Schiff base. Additional investigation of the D373E and D373N variants supported the hypothesis that the conserved catalytic aspartate is indeed essential for the reaction; however, it does not appear to serve as the catalytic base, as previously suggested. Rather, the electrostatic contributions of the most significant residues (including D373), together with the proximity of the Cu2+ cation to the reaction site, lower the activation barrier to drive the chemical reaction.

16.
ACS Chem Biol ; 12(7): 1928-1936, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28558229

RESUMO

SrLip is an extracellular enzyme from Streptomyces rimosus (Q93MW7) exhibiting lipase, phospholipase, esterase, thioesterase, and tweenase activities. The structure of SrLip is one of a very few lipases, among the 3D-structures of the SGNH superfamily of hydrolases, structurally characterized by synchrotron diffraction data at 1.75 Å resolution (PDB: 5MAL ). Its crystal structure was determined by molecular replacement using a homology model based on the crystal structure of phospholipase A1 from Streptomyces albidoflavus (PDB: 4HYQ ). The structure reveals the Rossmann-like 3-layer αßα sandwich fold typical of the SGNH superfamily stabilized by three disulfide bonds. The active site shows a catalytic dyad involving Ser10 and His216 with Ser10-OγH···NεHis216, His216-NδH···O═C-Ser214, and Gly54-NH···Oγ-Ser10 hydrogen bonds essential for the catalysis; the carbonyl oxygen of the Ser214 main chain acts as a hydrogen bond acceptor ensuring the orientation of the His216 imidazole ring suitable for a proton transfer. Molecular dynamics simulations of the apoenzyme and its complex with p-nitrophenyl caprylate were used to probe the positioning of the substrate ester group within the active site and its aliphatic chain within the binding site. Quantum-mechanical calculations at the DFT level revealed the precise molecular mechanism of the SrLip catalytic activity, demonstrating that the overall hydrolysis is a two-step process with acylation as the rate-limiting step associated with the activation free energy of ΔG⧧ENZ = 17.9 kcal mol-1, being in reasonable agreement with the experimental value of 14.5 kcal mol-1, thus providing strong support in favor of the proposed catalytic mechanism based on a dyad.


Assuntos
Lipase/química , Lipase/metabolismo , Modelos Moleculares , Streptomyces rimosus/enzimologia , Catálise , Domínio Catalítico , Simulação de Dinâmica Molecular , Dobramento de Proteína , Sulfetos/química
18.
Dalton Trans ; 45(7): 2845-58, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26616422

RESUMO

Metal complexes with ML or ML2 stoichiometry have been isolated in the reaction of Zn(NO3)2, ZnBr2 or M(NO3)2/NaBF4, M = Zn(ii), Co(ii) or Ni(ii), with either amino acid or amine substituted tridentate nitrogen ligands based on bis(2-picolyl)amine (bpa) or bis(2-quinaldyl)amine (bqa). The stoichiometry (M : L = 1 : 1 or 1 : 2) and stereochemistry (mer, trans-fac or cis-fac) of the products have been studied by NMR and IR spectroscopy, X-ray single crystal analysis and quantum-chemical calculations with an implicit SMD solvation model.


Assuntos
Aminas/química , Aminoácidos/química , Cobalto/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Níquel/química , Ácidos Picolínicos/química , Zinco/química , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo
19.
PLoS One ; 11(5): e0154002, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27159606

RESUMO

In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N-H and O-H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure.


Assuntos
Deutério/química , Histamina/metabolismo , Animais , Ligantes , Teoria Quântica , Ratos , Receptores Histamínicos/metabolismo
20.
Mol Biosyst ; 10(12): 3207-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25272963

RESUMO

Recently described and characterized Bradyrhizobium japonicum glycine:[carrier protein] ligase 1 (Bj Gly:CP ligase 1), a homologue of methanogenic type seryl-tRNA synthetase (SerRS) is an intriguing enzyme whose physiological role is not yet known. While aminoacyl-tRNA synthetases supply ribosome with amino acids for protein biosynthesis, this homologue transfers the activated amino acid to a specific carrier protein. Despite remarkable structural similarity between the Bj Gly:CP ligase 1 and the catalytic core domain of methanogenic type SerRS, the ligase displays altered and relaxed substrate specificity. In contrast to methanogenic SerRS which exclusively activates serine, the Bj Gly:CP ligase 1 predominantly activates glycine. Besides, it shows low activity in the presence of alanine, but it is incapable of activating serine. The detailed computational study aiming to address this unexpected substrate specificity toward the small aliphatic amino acids revealed the A281G Bj Gly:CP ligase 1 mutant as the most promising candidate with reconstituted catalytic activity toward the larger substrates. The A281G mutation is predicted to increase the active site volume, allowing alanine and serine to establish important hydrogen bonds within the active site, and to adopt an optimal orientation for the reaction. The results were tested by the site-directed mutagenesis experiments coupled with in vitro kinetic assays. It was found that the A281G substitution greatly affects the enzyme specificity and allows efficient activation of both polar and small aliphatic amino acids (serine, glycine and alanine), confirming predictions and conclusions based on molecular dynamics simulations.


Assuntos
Substituição de Aminoácidos , Bradyrhizobium/enzimologia , Serina-tRNA Ligase/química , Alanina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Bradyrhizobium/genética , Domínio Catalítico , Ligantes , Magnésio/química , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Serina/química , Serina-tRNA Ligase/genética , Especificidade por Substrato , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA