Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
1.
Nucleic Acids Res ; 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39436012

RESUMO

The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) serves as a comprehensive and expertly curated repository for major histocompatibility complex (MHC) sequences from non-human species, providing the necessary infrastructure and tools to study the function and evolution of this highly polymorphic genomic region. In its latest version, the IPD-MHC database has expanded both in content and in the tools for data visualization and comparison. The database now hosts over 18 000 MHC alleles from 125 species, organized into eleven taxonomic groups, all manually curated and named by the Comparative MHC Nomenclature Committee. A cetacean section has recently been included, offering researchers valuable data to study the immune system of whales, dolphins, and porpoises, as well establishing the official nomenclature platform for the Cetacea Leukocyte Antigens (CeLA). In response to user demand and reflecting broader trends in bioinformatics and immunogenetics, IPD-MHC now includes the predicted tertiary structure of over 8000 alleles and allows comparison and visualisation of allele variation within and between species at single residue resolution. These latest developments maintain the critically important link between official nomenclature of curated alleles and the ability to analyse this complex polymorphism using the most up to date methods within a single repository.

2.
Nucleic Acids Res ; 51(D1): D1053-D1060, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350643

RESUMO

It is 24 years since the IPD-IMGT/HLA Database, http://www.ebi.ac.uk/ipd/imgt/hla/, was first released, providing the HLA community with a searchable repository of highly curated HLA sequences. The database now contains over 35 000 alleles of the human Major Histocompatibility Complex (MHC) named by the WHO Nomenclature Committee for Factors of the HLA System. This complex contains the most polymorphic genes in the human genome and is now considered hyperpolymorphic. The IPD-IMGT/HLA Database provides a stable and user-friendly repository for this information. Uptake of Next Generation Sequencing technology in recent years has driven an increase in the number of alleles and the length of sequences submitted. As the size of the database has grown the traditional methods of accessing and presenting this data have been challenged, in response, we have developed a suite of tools providing an enhanced user experience to our traditional web-based users while creating new programmatic access for our bioinformatics user base. This suite of tools is powered by the IPD-API, an Application Programming Interface (API), providing scalable and flexible access to the database. The IPD-API provides a stable platform for our future development allowing us to meet the future challenges of the HLA field and needs of the community.


Assuntos
Bases de Dados Genéticas , Antígenos HLA , Humanos , Antígenos HLA/genética , Antígenos de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/genética , Software , Alelos
3.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34651188

RESUMO

Two recently developed models, trophoblast organoids and trophoblast stem cells (TSCs), are useful tools to further the understanding of human placental development. Both differentiate from villous cytotrophoblast (VCT) to either extravillous trophoblast (EVT) or syncytiotrophoblast (SCT). Here, we compare the transcriptomes and miRNA profiles of these models to identify which trophoblast they resemble in vivo. Our findings indicate that TSCs do not readily undergo SCT differentiation and closely resemble cells at the base of the cell columns from where EVT derives. In contrast, organoids are similar to VCT and undergo spontaneous SCT differentiation. A defining feature of human trophoblast is that VCT and SCT are human leukocyte antigen (HLA) null, whereas EVT expresses HLA-C, -G and -E molecules. We find that trophoblast organoids retain these in vivo characteristics. In contrast, TSCs express classical HLA-A and HLA-B molecules, and maintain their expression after EVT differentiation, with upregulation of HLA-G. Furthermore, HLA expression in TSCs differs when grown in 3D rather than in 2D, suggesting that mechanical cues are important. Our results can be used to select the most suitable model for the study of trophoblast development, function and pathology.


Assuntos
Modelos Biológicos , Trofoblastos/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Feminino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Organoides/citologia , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Placentação , Gravidez , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma , Trofoblastos/metabolismo
4.
Blood ; 140(8): 909-921, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35776903

RESUMO

Patients with severe aplastic anemia (SAA) can have an unrecognized inherited bone marrow failure syndrome (IBMFS) because of phenotypic heterogeneity. We curated germline genetic variants in 104 IBMFS-associated genes from exome sequencing performed on 732 patients who underwent hematopoietic cell transplant (HCT) between 1989 and 2015 for acquired SAA. Patients with pathogenic or likely pathogenic (P/LP) variants fitting known disease zygosity patterns were deemed unrecognized IBMFS. Carriers were defined as patients with a single P/LP variant in an autosomal recessive gene or females with an X-linked recessive P/LP variant. Cox proportional hazard models were used for survival analysis with follow-up until 2017. We identified 113 P/LP single-nucleotide variants or small insertions/deletions and 10 copy number variants across 42 genes in 121 patients. Ninety-one patients had 105 in silico predicted deleterious variants of uncertain significance (dVUS). Forty-eight patients (6.6%) had an unrecognized IBMFS (33% adults), and 73 (10%) were carriers. No survival difference between dVUS and acquired SAA was noted. Compared with acquired SAA (no P/LP variants), patients with unrecognized IBMFS, but not carriers, had worse survival after HCT (IBMFS hazard ratio [HR], 2.13; 95% confidence interval[CI], 1.40-3.24; P = .0004; carriers HR, 0.96; 95% CI, 0.62-1.50; P = .86). Results were similar in analyses restricted to patients receiving reduced-intensity conditioning (n = 448; HR IBMFS = 2.39; P = .01). The excess mortality risk in unrecognized IBMFS attributed to death from organ failure (HR = 4.88; P < .0001). Genetic testing should be part of the diagnostic evaluation for all patients with SAA to tailor therapeutic regimens. Carriers of a pathogenic variant in an IBMFS gene can follow HCT regimens for acquired SAA.


Assuntos
Anemia Aplástica , Transplante de Células-Tronco Hematopoéticas , Adulto , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Testes Genéticos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Condicionamento Pré-Transplante/métodos
5.
Blood ; 139(10): 1452-1468, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-34724567

RESUMO

Hematopoietic cell transplantation from HLA-haploidentical related donors is increasingly used to treat hematologic cancers; however, characteristics of the optimal haploidentical donor have not been established. We studied the role of donor HLA mismatching in graft-versus-host disease (GVHD), disease recurrence, and survival after haploidentical donor transplantation with posttransplantation cyclophosphamide (PTCy) for 1434 acute leukemia or myelodysplastic syndrome patients reported to the Center for International Blood and Marrow Transplant Research. The impact of mismatching in the graft-versus-host vector for HLA-A, -B, -C, -DRB1, and -DQB1 alleles, the HLA-B leader, and HLA-DPB1 T-cell epitope (TCE) were studied using multivariable regression methods. Outcome was associated with HLA (mis)matches at individual loci rather than the total number of HLA mismatches. HLA-DRB1 mismatches were associated with lower risk of disease recurrence. HLA-DRB1 mismatching with HLA-DQB1 matching correlated with improved disease-free survival. HLA-B leader matching and HLA-DPB1 TCE-nonpermissive mismatching were each associated with improved overall survival. HLA-C matching lowered chronic GVHD risk, and the level of HLA-C expression correlated with transplant-related mortality. Matching status at the HLA-B leader and HLA-DRB1, -DQB1, and -DPB1 predicted disease-free survival, as did patient and donor cytomegalovirus serostatus, patient age, and comorbidity index. A web-based tool was developed to facilitate selection of the best haploidentical-related donor by calculating disease-free survival based on these characteristics. In conclusion, HLA factors influence the success of haploidentical transplantation with PTCy. HLA-DRB1 and -DPB1 mismatching and HLA-C, -B leader, and -DQB1 matching are favorable. Consideration of HLA factors may help to optimize the selection of haploidentical related donors.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Ciclofosfamida/uso terapêutico , Doença Enxerto-Hospedeiro/etiologia , Antígenos HLA-B , Antígenos HLA-C , Cadeias HLA-DRB1 , Transplante de Células-Tronco Hematopoéticas/métodos , Teste de Histocompatibilidade , Humanos , Doadores não Relacionados
6.
Nature ; 564(7735): 263-267, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30487605

RESUMO

The placenta is the extraembryonic organ that supports the fetus during intrauterine life. Although placental dysfunction results in major disorders of pregnancy with immediate and lifelong consequences for the mother and child, our knowledge of the human placenta is limited owing to a lack of functional experimental models1. After implantation, the trophectoderm of the blastocyst rapidly proliferates and generates the trophoblast, the unique cell type of the placenta. In vivo, proliferative villous cytotrophoblast cells differentiate into two main sub-populations: syncytiotrophoblast, the multinucleated epithelium of the villi responsible for nutrient exchange and hormone production, and extravillous trophoblast cells, which anchor the placenta to the maternal decidua and transform the maternal spiral arteries2. Here we describe the generation of long-term, genetically stable organoid cultures of trophoblast that can differentiate into both syncytiotrophoblast and extravillous trophoblast. We used human leukocyte antigen (HLA) typing to confirm that the organoids were derived from the fetus, and verified their identities against four trophoblast-specific criteria3. The cultures organize into villous-like structures, and we detected the secretion of placental-specific peptides and hormones, including human chorionic gonadotropin (hCG), growth differentiation factor 15 (GDF15) and pregnancy-specific glycoprotein (PSG) by mass spectrometry. The organoids also differentiate into HLA-G+ extravillous trophoblast cells, which vigorously invade in three-dimensional cultures. Analysis of the methylome reveals that the organoids closely resemble normal first trimester placentas. This organoid model will be transformative for studying human placental development and for investigating trophoblast interactions with the local and systemic maternal environment.


Assuntos
Relações Materno-Fetais , Modelos Biológicos , Organoides/citologia , Organoides/fisiologia , Placentação , Técnicas de Cultura de Tecidos , Trofoblastos/citologia , Trofoblastos/fisiologia , Diferenciação Celular , Movimento Celular , Gonadotropina Coriônica/metabolismo , Metilação de DNA , Decídua/citologia , Feminino , Fator 15 de Diferenciação de Crescimento/metabolismo , Antígenos HLA/metabolismo , Humanos , Organoides/metabolismo , Gravidez , Glicoproteínas beta 1 Específicas da Gravidez/metabolismo , Transcriptoma/genética , Trofoblastos/metabolismo
7.
J Immunol ; 206(12): 3064-3072, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34117109

RESUMO

In the treatment of acute myelogenous leukemia with allogeneic hematopoietic cell transplantation, we previously demonstrated that there is a greater protection from relapse of leukemia when the hematopoietic cell transplantation donor has either the Cen B/B KIR genotype or a genotype having two or more KIR B gene segments. In those earlier analyses, KIR genotyping could only be assessed at the low resolution of gene presence or absence. To give the analysis greater depth, we developed high-resolution KIR sequence-based typing that defines all the KIR alleles and distinguishes the expressed alleles from those that are not expressed. We now describe and analyze high-resolution KIR genotypes for 890 donors of this human transplant cohort. Cen B01 and Cen B02 are the common CenB haplotypes, with Cen B02 having evolved from Cen B01 by deletion of the KIR2DL5, 2DS3/5, 2DP1, and 2DL1 genes. We observed a consistent trend for Cen B02 to provide stronger protection against relapse than Cen B01 This correlation indicates that protection depends on the donor having inhibitory KIR2DL2 and/or activating KIR2DS2, and is enhanced by the donor lacking inhibitory KIR2DL1, 2DL3, and 3DL1. High-resolution KIR typing has allowed us to compare the strength of the interactions between the recipient's HLA class I and the KIR expressed by the donor-derived NK cells and T cells, but no clinically significant interactions were observed. The trend observed between donor Cen B02 and reduced relapse of leukemia points to the value of studying ever larger transplant cohorts.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Genótipo , Antígenos HLA , Humanos , Leucemia Mieloide Aguda/genética , Receptores KIR/genética , Recidiva
8.
Nucleic Acids Res ; 48(D1): D948-D955, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31667505

RESUMO

The IPD-IMGT/HLA Database, http://www.ebi.ac.uk/ipd/imgt/hla/, currently contains over 25 000 allele sequence for 45 genes, which are located within the Major Histocompatibility Complex (MHC) of the human genome. This region is the most polymorphic region of the human genome, and the levels of polymorphism seen exceed most other genes. Some of the genes have several thousand variants and are now termed hyperpolymorphic, rather than just simply polymorphic. The IPD-IMGT/HLA Database has provided a stable, highly accessible, user-friendly repository for this information, providing the scientific and medical community access to the many variant sequences of this gene system, that are critical for the successful outcome of transplantation. The number of currently known variants, and dramatic increase in the number of new variants being identified has necessitated a dedicated resource with custom tools for curation and publication. The challenge for the database is to continue to provide a highly curated database of sequence variants, while supporting the increased number of submissions and complexity of sequences. In order to do this, traditional methods of accessing and presenting data will be challenged, and new methods will need to be utilized to keep pace with new discoveries.


Assuntos
Alelos , Biologia Computacional , Bases de Dados Genéticas , Antígenos de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/genética , Software , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Navegador
9.
Immunogenetics ; 72(1-2): 49-55, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31641782

RESUMO

The Immuno Polymorphism Database (IPD), https://www.ebi.ac.uk/ipd/, is a set of specialist databases that enable the study of polymorphic genes which function as part of the vertebrate immune system. The major focus is on the hyperpolymorphic major histocompatibility complex (MHC) genes and the killer-cell immunoglobulin-like receptor (KIR) genes, by providing the official repository and primary source of sequence data. Databases are centred around humans as well as animals important for food security, for companionship and as disease models. The IPD project works with specialist groups or nomenclature committees who provide and manually curate individual sections before they are submitted for online publication. To reflect the recent advance of allele sequencing technologies and the increasing demands of novel tools for the analysis of genomic variation, the IPD project is undergoing a progressive redesign and reorganisation. In this review, recent updates and future developments are discussed, with a focus on the core concepts to better future-proof the project.


Assuntos
Antígenos de Plaquetas Humanas/genética , Complexo Principal de Histocompatibilidade/genética , Biologia Computacional/métodos , Bases de Dados como Assunto , Bases de Dados Factuais , Bases de Dados Genéticas , Epitopos de Linfócito T/genética , Antígenos HLA/genética , Humanos , Imunidade/genética , Polimorfismo Genético/genética , Alinhamento de Sequência/estatística & dados numéricos
10.
Immunogenetics ; 72(1-2): 25-36, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31624862

RESUMO

The major histocompatibility complex (MHC) is central to the innate and adaptive immune responses of jawed vertebrates. Characteristic of the MHC are high gene density, gene copy number variation, and allelic polymorphism. Because apes and monkeys are the closest living relatives of humans, the MHCs of these non-human primates (NHP) are studied in depth in the context of evolution, biomedicine, and conservation biology. The Immuno Polymorphism Database (IPD)-MHC NHP Database (IPD-MHC NHP), which curates MHC data of great and small apes, as well as Old and New World monkeys, has been upgraded. The curators of the database are responsible for providing official designations for newly discovered alleles. This nomenclature report updates the 2012 report, and summarizes important nomenclature issues and relevant novel features of the IPD-MHC NHP Database.


Assuntos
Bases de Dados Genéticas , Complexo Principal de Histocompatibilidade/genética , Primatas/genética , Primatas/imunologia , Alelos , Animais , Cercopithecidae/genética , Hominidae/genética , Complexo Principal de Histocompatibilidade/fisiologia , Filogenia , Platirrinos/genética , Polimorfismo Genético , Terminologia como Assunto
11.
Immunogenetics ; 72(1-2): 37-47, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31781789

RESUMO

The Killer-cell Immunoglobulin-like Receptors (KIR) are encoded by a diverse group of genes, which are characterized by allelic polymorphism, gene duplications, and recombinations, which may generate recombinant entities. The number of reported macaque KIR sequences is steadily increasing, and these data illustrate a gene system that may match or exceed the complexity of the human KIR cluster. This report lists the names of quality controlled and annotated KIR genes/alleles with all the relevant references for two different macaque species: rhesus and cynomolgus macaques. Numerous recombinant KIR genes in these species necessitate a revision of some of the earlier-published nomenclature guidelines. In addition, this report summarizes the latest information on the Immuno Polymorphism Database (IPD)-NHKIR Database, which contains annotated KIR sequences from four non-human primate species.


Assuntos
Bases de Dados Factuais , Imunogenética , Macaca mulatta/genética , Polimorfismo Genético , Receptores KIR/genética , Receptores KIR/imunologia , Terminologia como Assunto , Animais
12.
Immunogenetics ; 72(1-2): 131-132, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31745605

RESUMO

The original version of this article contained a spelling error in the Acknowledgments regarding the name of the funding organisation supporting GM and JAH. UKRI-BBSCR should have been UKRI-BBSRC, as is now indicated correctly below.

13.
PLoS Genet ; 13(6): e1006862, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28650991

RESUMO

HLA class I glycoproteins contain the functional sites that bind peptide antigens and engage lymphocyte receptors. Recently, clinical application of sequence-based HLA typing has uncovered an unprecedented number of novel HLA class I alleles. Here we define the nature and extent of the variation in 3,489 HLA-A, 4,356 HLA-B and 3,111 HLA-C alleles. This analysis required development of suites of methods, having general applicability, for comparing and analyzing large numbers of homologous sequences. At least three amino-acid substitutions are present at every position in the polymorphic α1 and α2 domains of HLA-A, -B and -C. A minority of positions have an incidence >1% for the 'second' most frequent nucleotide, comprising 70 positions in HLA-A, 85 in HLA-B and 54 in HLA-C. The majority of these positions have three or four alternative nucleotides. These positions were subject to positive selection and correspond to binding sites for peptides and receptors. Most alleles of HLA class I (>80%) are very rare, often identified in one person or family, and they differ by point mutation from older, more common alleles. These alleles with single nucleotide polymorphisms reflect the germ-line mutation rate. Their frequency predicts the human population harbors 8-9 million HLA class I variants. The common alleles of human populations comprise 42 core alleles, which represent all selected polymorphism, and recombinants that have assorted this polymorphism.


Assuntos
Genética Populacional , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Alelos , Análise Mutacional de DNA , Mutação em Linhagem Germinativa/genética , Teste de Histocompatibilidade , Humanos , Filogenia , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência
14.
Med Princ Pract ; 29(1): 39-45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30870850

RESUMO

OBJECTIVE: The aim of this study was to assess the HLA haplotype frequencies and genetic profiles of the Kuwaiti population. MATERIALS AND METHODS: Whole venous blood was obtained from 595 healthy, unrelated Kuwaiti volunteers. The study population was genotyped for HLA class I (HLA-A, HLA-B, and HLA-C) and class II (HLA-DRB1 and HLA-DQB1) loci using sequence-specific oligonucleotide (SSO) probe-based hybridization and high-resolution HLA genotyping. Haplotype frequencies were estimated using an implementation of the expectation maximization algorithm that resolves both phase and allelic ambiguity. The Kuwaiti population was compared with other populations from the US National Marrow Donor Program (NMDP), by running a principal component analysis (PCA) on the relevant haplotype frequencies. RESULTS: The most common HLA class I alleles in Kuwait were HLA-A*02:01g, HLA-C*06:02g, and HLA-B*50:01g with frequencies of 16, 14, and 12%, respectively. The most common HLA class II alleles in Kuwait were HLA-DQB1*02:01g and HLA-DRB1*07:01 with frequencies of 29.7 and 16.5%, respectively. The most common Kuwaiti haplotype observed was HLA-A*02:01g∼HLA-C*06:02g∼HLA-B*50:01g∼HLA-DRB1*07:01∼HLA-DQB1*02:01g at a frequency of 2.3%. The PCA demonstrated close genetic proximity of the Kuwaiti population with Middle Eastern, Southeast Asian, and North African populations in the NMDP. CONCLUSION: Identifying the haplotype diversity in the Kuwaiti population will contribute to the selection of an HLA-match for HSCT, disease associations, pharmacogenomics, and knowledge of pop-ulation HLA diversity.


Assuntos
Antígenos HLA/genética , Haplótipos/genética , Perfil Genético , Variação Genética , Antígenos HLA/sangue , Humanos , Kuweit
15.
Biol Blood Marrow Transplant ; 25(5): 949-954, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30594542

RESUMO

Allogeneic hematopoietic cell transplantation (alloHCT) remains the sole curative therapy for patients with chronic lymphocytic leukemia (CLL), leading to 40% to 45% long-term survival. The impact of donor killer immunoglobulin-like receptor (KIR) genotype on outcomes of unrelated donor (URD) alloHCT for CLL is unknown. We examined 573 adult URD CLL recipient pairs. KIR genotype (presence/absence) was determined for each donor, and comprehensive modeling of interactions with recipient HLA class I loci (KIR ligands) was used to evaluate their effect on relapse and survival. Recipients had a median age of 56 years, and most were not in remission (65%). Both 8/8 HLA-matched (81%) or 7/8 HLA matched grafts (19%) were studied. Factors associated with improved overall survival (OS) were reduced-intensity conditioning (hazard ratio [HR] of death, .76) and good performance status (HR, .46), whereas alloHCT in nonremission (HR, 1.96) and mismatched donors (HR, 2.01) increased mortality. No models demonstrated a relationship between donor KIR genotype and transplant outcomes. Cox regression models comparing donors with A/A versus B/x KIR haplotypes and those with KIR gene content scores of 0 versus 1 versus ≥2 yielded similar rates of nonrelapse mortality, relapse, acute graft-versus-host disease (GVHD), and chronic GVHD and the same progression-free survival and OS. Relapse risk was not different for grafts from donors with KIR3DL1 transplanted into HLA C1/1 versus C2 recipients. This large analysis failed to demonstrate an association between URD KIR genotype and transplant outcome for patients with CLL, and thus KIR genotyping should not be used as a donor selection criterion in this setting.


Assuntos
Efeito Enxerto vs Leucemia/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Leucemia Linfocítica Crônica de Células B/terapia , Receptores KIR/genética , Doadores não Relacionados , Adulto , Intervalo Livre de Doença , Seleção do Doador/métodos , Feminino , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/mortalidade , Humanos , Leucemia Linfocítica Crônica de Células B/mortalidade , Masculino , Pessoa de Meia-Idade , Recidiva , Taxa de Sobrevida , Adulto Jovem
16.
Biol Blood Marrow Transplant ; 25(1): e28-e32, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30149149

RESUMO

We previously reported that acute myelogenous leukemia (AML) transplants using killer cell immunoglobulin-type receptor (KIR) B haplotype better or best (≥2 B activating gene loci ± Cen B/B) unrelated donors (URDs) yield less relapse and better survival. In this prospective trial we evaluated 535 AML searches from 14 participating centers with centralized donor KIR genotyping for donor selection. This represented 3% to 48% of all AML searches (median 20%) per center, totaling 3 to 172 patients (median 22) per center. Donor KIR genotype was reported at a median of 14 days after request (≤26 days for 76% of searches). In 535 searches, 2080 donors were requested for KIR genotyping (mean 4.3 per search); and a median of 1.8 (range, 0 to 4.5) per search were KIR typed. Choosing more donors for confirmatory HLA and KIR haplotype identification enriched the likelihood of finding KIR better or best donors. The search process identified a mean of 30% KIR better or best donors; the success ranged from 24% to 38% in the 11 centers enrolling ≥8 patients. More donors requested for KIR genotyping increased the likelihood of identifying KIR better or best haplotype donors. Of the 247 transplants, 9.3% used KIR best, 19% used KIR better, and 48% used KIR neutral donors while 24% used a non-KIR-tested donor. KIR genotyping did not delay transplantation. The time from search to transplant was identical for transplants using a KIR-genotyped versus a non-KIR-genotyped donor. Prospective evaluation can rapidly identify KIR favorable genotype donors, but choosing more donors per search would substantially increase the likelihood of having a KIR best or better donor available for transplantation. Transplant centers and donor registries must both commit extra effort to incorporate new characteristics (beyond HLA, age, and parity) into improved donor selection. Deliberate efforts to present additional genetic factors for donor selection will require novel procedures.


Assuntos
Seleção do Doador , Haplótipos , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/terapia , Receptores KIR/genética , Doadores não Relacionados , Adolescente , Adulto , Estudos de Viabilidade , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
17.
Biol Blood Marrow Transplant ; 25(3): 443-450, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30935664

RESUMO

HLA matching at an allelic-level resolution for volunteer unrelated donor (VUD) hematopoietic cell transplantation (HCT) results in improved survival and fewer post-transplant complications. Limitations in typing technologies used for the hyperpolymorphic HLA genes have meant that variations outside of the antigen recognition domain (ARD) have not been previously characterized in HCT. Our aim was to explore the extent of diversity outside of the ARD and determine the impact of this diversity on transplant outcome. Eight hundred ninety-one VUD-HCT donors and their recipients transplanted for a hematologic malignancy in the United Kingdom were retrospectively HLA typed at an ultra-high resolution (UHR) for HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1 using next-generation sequencing technology. Matching was determined at full gene level for HLA class I and at a coding DNA sequence level for HLA class II genes. The HLA matching status changed in 29.1% of pairs after UHR HLA typing. The 12/12 UHR HLA matched patients had significantly improved 5-year overall survival when compared with those believed to be 12/12 HLA matches based on their original HLA typing but were found to be mismatched after UHR HLA typing (54.8% versus 30.1%, P = .022). Survival was also significantly better in 12/12 UHR HLA-matched patients when compared with those with any degree of mismatch at this level of resolution (55.1% versus 40.1%, P = .005). This study shows that better HLA matching, found when typing is done at UHR that includes exons outside of the ARD, introns, and untranslated regions, can significantly improve outcomes for recipients of a VUD-HCT for a hematologic malignancy and should be prospectively performed at donor selection.


Assuntos
Transplante de Células-Tronco Hematopoéticas/mortalidade , Teste de Histocompatibilidade/normas , Histocompatibilidade/imunologia , Análise de Sequência de DNA/normas , Adulto , Alelos , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Histocompatibilidade/genética , Teste de Histocompatibilidade/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Análise de Sobrevida , Doadores não Relacionados
19.
Stem Cells ; 36(10): 1552-1566, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30004605

RESUMO

Although autologous induced pluripotent stem cells (iPSCs) can potentially be useful for treating patients without immune rejection, in reality it will be extremely expensive and labor-intensive to make iPSCs to realize personalized medicine. An alternative approach is to make use of human leukocyte antigen (HLA) haplotype homozygous donors to provide HLA matched iPSC products to significant numbers of patients. To establish a haplobank of iPSCs, we repurposed the cord blood bank by screening ∼4,200 high resolution HLA typed cord blood samples, and selected those homozygous for the 10 most frequent HLA-A,-B,-DRB1 haplotypes in the Korean population. Following the generation of 10 iPSC lines, we conducted a comprehensive characterization, including morphology, expression of pluripotent markers and cell surface antigens, three-germ layer formation, vector clearance, mycoplasma/microbiological/viral contamination, endotoxin, and short tandem repeat (STR) assays. Various genomic analyses using microarray and comparative genomic hybridization (aCGH)-based single nucleotide polymorphism (SNP) and copy number variation (CNV) were also conducted. These 10 HLA-homozygous iPSC lines match 41.07% of the Korean population. Comparative analysis of HLA population data shows that they are also of use in other Asian populations, such as Japan, with some limited utility in ethnically diverse populations, such as the UK. Taken together, the generation of the 10 most frequent Korean HLA-homozygous iPSC lines serves as a useful pointer for the development of optimal methods for iPSC generation and quality control and indicates the benefits and limitations of collaborative HLA driven selection of donors for future stocking of worldwide iPSC haplobanks. Stem Cells 2018;36:1552-1566.


Assuntos
Armazenamento de Sangue/métodos , Instabilidade Genômica/genética , Antígenos HLA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Haplótipos , Antígenos de Histocompatibilidade Classe II , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA