Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 28(1): 423-35, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20805188

RESUMO

Two of the most well-supported patterns to have emerged over the past two decades of research in evolutionary biology are the occurrence of divergent natural selection acting on many male and female reproductive tract proteins and the importance of postmating, prezygotic phenotypes in reproductively isolating closely related species. Although these patterns appear to be common across a wide variety of taxa, the link between them remains poorly documented. Here, we utilize comparative proteomic techniques to determine whether or not there is evidence for natural selection acting on the ejaculate proteomes of two cricket species (Allonemobius fasciatus and A. socius) which are reproductively isolated primarily by postmating, prezygotic phenotypes. In addressing this question, we compare the degree of within-species polymorphism and between-species divergence between the ejaculate and thorax proteomes of these two species. We found that the ejaculate proteomes are both less polymorphic and more divergent than the thorax proteomes. Additionally, we assessed patterns of nucleotide variation for two species-specific ejaculate proteins and found evidence for both reduced levels of variation within species and positive selection driving divergence between species. In contrast, non-species-specific proteins exhibited higher levels of within-species nucleotide variation and no signatures of positive selection. Nucleotide and putative functional data for the two species-specific proteins, along with data for a third protein (ejaculate serine protease), suggest that all three of these genes are candidate speciation genes in need of further study. Overall, these patterns of proteome and nucleotide divergence provide support for the hypothesis that there is a causative link between selection-driven divergence of male ejaculate proteins and the evolution of postmating, prezygotic barriers to gene flow within Allonemobius.


Assuntos
Evolução Biológica , Gryllidae/genética , Proteoma/análise , Proteômica/métodos , Reprodução/genética , Seleção Genética , Sêmen/química , Animais , Sequência de Bases , Feminino , Variação Genética , Gryllidae/fisiologia , Proteínas de Insetos/análise , Proteínas de Insetos/genética , Masculino , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Fenótipo , Especificidade da Espécie
2.
Sci Rep ; 12(1): 5315, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351905

RESUMO

The diel biting activity of Aedes (Stegomyia) aegypti (L) populations was extensively investigated in the early 1900s to gain more information on the biology of Ae. aegypti, and this information was used to devise effective approaches to controlling populations of this species and protect the human population from widespread arbovirus outbreaks. However, few contemporary studies are available regarding the diel activity patterns of Ae. aegypti. To assess the diel activity patterns of Ae. aegypti in southern Florida and Texas, we conducted 96-h uninterrupted mosquito collections once each month from May through November 2019 in Miami, Florida, and Brownsville, Texas, using BG-Sentinel 2 Traps. The overall diel activity pattern in both cities was bimodal with morning and evening peak activity between 7:00 and 8:00 and between 19:00 and 20:00. There were significant daily, monthly, seasonal, and site-specific differences in activity patterns, but these differences did not affect the overall peak activity times. These differences suggest daily, monthly, seasonal, and site-specific variations in human exposure to Ae. aegypti. Our observations can be used in planning and executing Ae. aegypti vector control activities in southern Florida and southern Texas, specifically those targeting the adult mosquito populations.


Assuntos
Aedes , Adulto , Animais , Cidades , Florida , Humanos , Mosquitos Vetores , Dinâmica Populacional
3.
Proc Natl Acad Sci U S A ; 105(29): 9965-9, 2008 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-18621720

RESUMO

In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid-plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Here, we focus on a salivary protein we have arbitrarily designated Protein C002. We have shown, by using RNAi-based transcript knockdown, that this protein is important in the survival of the pea aphid (Acyrthosiphon pisum) on fava bean, a host plant. Here, we further characterize the protein, its transcript, and its gene, and we study the feeding process of knockdown aphids. The encoded protein fails to match any protein outside of the family Aphididae. By using in situ hybridization and immunohistochemistry, the transcript and the protein were localized to a subset of secretory cells in principal salivary glands. Protein C002, whose sequence contains an N-terminal secretion signal, is injected into the host plant during aphid feeding. By using the electrical penetration graph method on c002-knockdown aphids, we find that the knockdown affects several aspects of foraging and feeding, with the result that the c002-knockdown aphids spend very little time in contact with phloem sap in sieve elements. Thus, we infer that Protein C002 is crucial in the feeding of the pea aphid on fava bean.


Assuntos
Afídeos/fisiologia , Proteínas de Insetos/fisiologia , Proteínas e Peptídeos Salivares/fisiologia , Sequência de Aminoácidos , Animais , Afídeos/genética , Sequência de Bases , DNA Complementar/genética , Ingestão de Alimentos/fisiologia , Dosagem de Genes , Genes de Insetos , Interações Hospedeiro-Patógeno/fisiologia , Proteínas de Insetos/genética , Dados de Sequência Molecular , Interferência de RNA , Proteínas Recombinantes/genética , Proteínas e Peptídeos Salivares/genética , Vicia faba/parasitologia
4.
J Econ Entomol ; 103(3): 958-65, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20568643

RESUMO

The Russian wheat aphid, Diruaphis noxia (Kudjumov) (Hemiptera: Aphididae), is globally one of the most devastating pests of bread wheat, Tritium aestivum L., durum wheat, Triticum turgidum L., and barley, Hordeum vulgare L. Several sources of D. noxia resistance have been incorporated in commercial wheat and barley genotypes, but up to eight virulent biotypes, defined based on their ability to damage different wheat and barley genotypes, now occur across the western United States since the first appearance of D. noxia in North America in 1986. Critical to the study of D. noxia and other invasive species is an understanding of the number and origin of invasions that have occurred, as well as the rate or potential of postinvasion adaptation and geographic range expansion. The goal of this study was to determine whether D. noxia biotypes are by-products of a single invasion or multiple invasions into North America. We used the genome-wide technique of amplified fragment length polymorphisms, in combination with 22 collections of D. noxia from around the world, to assess this question, as well as patterns of genetic divergence. We found multiple lines of evidence that there have been at least two D. noxia invasions of different origin into North America, each resulting in subsequent postinvasion diversification that has since yielded multiple biotypes.


Assuntos
Afídeos/genética , Filogenia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Genoma de Inseto , Geografia , América do Norte
5.
BMC Evol Biol ; 9: 113, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19460149

RESUMO

BACKGROUND: Geographic clines within species are often interpreted as evidence of adaptation to varying environmental conditions. However, clines can also result from genetic drift, and these competing hypotheses must therefore be tested empirically. The striped ground cricket, Allonemobius socius, is widely-distributed in the eastern United States, and clines have been documented in both life-history traits and genetic alleles. One clinally-distributed locus, isocitrate dehydrogenase (Idh-1), has been shown previously to exhibit significant correlations between allele frequencies and environmental conditions (temperature and rainfall). Further, an empirical study revealed a significant genotype-by-environmental interaction (GxE) between Idh-1 genotype and temperature which affected fitness. Here, we use enzyme kinetics to further explore GxE between Idh-1 genotype and temperature, and test the predictions of kinetic activity expected under drift or selection. RESULTS: We found significant GxE between temperature and three enzyme kinetic parameters, providing further evidence that the natural distributions of Idh-1 allele frequencies in A. socius are maintained by natural selection. Differences in enzyme kinetic activity across temperatures also mirror many of the geographic patterns observed in allele frequencies. CONCLUSION: This study further supports the hypothesis that the natural distribution of Idh-1 alleles in A. socius is driven by natural selection on differential enzymatic performance. This example is one of several which clearly document a functional basis for both the maintenance of common alleles and observed clines in allele frequencies, and provides further evidence for the non-neutrality of some allozyme alleles.


Assuntos
Gryllidae/genética , Isocitrato Desidrogenase/genética , Seleção Genética , Temperatura , Adaptação Fisiológica/genética , Animais , Meio Ambiente , Frequência do Gene , Genes de Insetos , Deriva Genética , Genótipo , Geografia , Gryllidae/enzimologia , Isocitrato Desidrogenase/metabolismo , Cinética
6.
Biomolecules ; 9(1)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650664

RESUMO

The phosphatidylinositol 3-kinase (PI3K) pathway plays a central role in the regulation of cell signaling, proliferation, survival, migration and vesicle trafficking in normal cells and is frequently deregulated in many cancers. The p85α protein is the most characterized regulatory subunit of the class IA PI3Ks, best known for its regulation of the p110-PI3K catalytic subunit. In this review, we will discuss the impact of p85α mutations or alterations in expression levels on the proteins p85α is known to bind and regulate. We will focus on alterations within the N-terminal half of p85α that primarily regulate Rab5 and some members of the Rho-family of GTPases, as well as those that regulate PTEN (phosphatase and tensin homologue deleted on chromosome 10), the enzyme that directly counteracts PI3K signaling. We highlight recent data, mapping the interaction surfaces of the PTEN⁻p85α breakpoint cluster region homology (BH) domain, which sheds new light on key residues in both proteins. As a multifunctional protein that binds and regulates many different proteins, p85α mutations at different sites have different impacts in cancer and would necessarily require distinct treatment strategies to be effective.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Neoplasias/patologia , Classe Ia de Fosfatidilinositol 3-Quinase/química , Humanos , Mutação , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
7.
Genetics ; 176(2): 1209-22, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17435237

RESUMO

The evolution of barriers to gene exchange is centrally important to speciation. We used the crickets Allonemobius fasciatus and A. socius to investigate the genetic architecture of conspecific sperm precedence (CSP), a postinsemination prezygotic reproductive barrier. With amplified fragment-length polymorphism (AFLP) markers and controlled crosses we constructed linkage maps and estimated positions of QTL associated with CSP. The majority of QTL have low to moderate effects, although a few QTL exist in A. socius with large effects, and the numbers of QTL are comparable to numbers of genes accounting for species differences in other studies. The QTL are spread across many unlinked markers, yet QTL placed with linked markers are on a small number of linkage groups that could reflect the role of the large Allonemobius sex chromosome in prezygotic isolation. Although many QTL had positive effects on conspecific sperm utilization several QTL also exerted negative effects, which could be explained by intraspecific sexual conflict, sperm competition, or epistasis of introgressed genes on novel backgrounds. One unexpected outcome was that A. socius CSP alleles have a stronger effect than those from A. fasciatus in hybrid females, causing hybrids to behave like A. socius with regard to sperm utilization. Implications of this asymmetry in the Allonemobius hybrid zone are discussed.


Assuntos
Cruzamentos Genéticos , Gryllidae/genética , Locos de Características Quantitativas , Espermatozoides/fisiologia , Animais , Clima , Feminino , Gryllidae/classificação , Masculino , América do Norte , Linhagem , Densidade Demográfica , Reprodução/genética
8.
Insect Biochem Mol Biol ; 38(9): 817-24, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18675911

RESUMO

The multicopper oxidase (MCO) family of enzymes includes laccases, which oxidize a broad range of substrates including diphenols, and several oxidases with specific substrates such as iron, copper or ascorbic acid. We have identified five putative MCO genes in the genome of Anopheles gambiae and have cloned cDNAs encompassing the full coding region for each gene. MCO1 mRNA was detected in all developmental stages and in all of the larval and adult tissues tested. We observed an increase in MCO1 transcript abundance in the midguts and Malphighian tubules of adult females following a blood meal and in adult abdominal carcasses in response to an immune challenge. Two alternatively spliced isoforms of MCO2 mRNA were identified. The A isoform of MCO2 was previously detected in larval and pupal cuticle where it probably catalyzes sclerotization reactions (He, N., Botelho, J.M.C., McNall, R.J., Belozerov, V., Dunn, W.A., Mize, T., Orlando, R., Willis, J.H., 2007. Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem. Mol. Biol. 37, 135-146). The B isoform was transcriptionally upregulated in ovaries in response to a blood meal. MCO3 mRNA was detected in the adult midgut, Malpighian tubules, and male reproductive tissues; like MCO1, it was upregulated in response to an immune challenge or a blood meal. MCO4 and MCO5 were observed primarily in eggs and in the abdominal carcass of larvae. A phylogenetic analysis of insect MCO genes identified putative orthologs of MCO1 and MCO2 in all of the insect genomes tested, whereas MCO3, MCO4 and MCO5 were found only in the two mosquito species analyzed. MCO2 orthologs have especially high sequence similarity, suggesting that they are under strong purifying selection; the A isoforms are more conserved than the B isoforms. The mosquito specific group shares a common ancestor with MCO2. This initial study of mosquito MCOs suggests that MCO2 may be required for egg development or eggshell tanning in addition to cuticle tanning, while MCO1 and MCO3 may be involved in metal metabolism or immunity.


Assuntos
Anopheles/fisiologia , Oxirredutases/metabolismo , Sequência de Aminoácidos , Animais , Comportamento Alimentar , Feminino , Expressão Gênica , Imunidade Inata , Masculino , Dados de Sequência Molecular , Família Multigênica , Óvulo/metabolismo , Oxirredutases/genética , Filogenia , Pigmentação , Análise de Sequência de DNA
9.
Oncotarget ; 9(97): 36975-36992, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30651929

RESUMO

The phosphatidylinositol 3-kinase (PI3K) pathway plays a key role in regulating cell growth and cell survival and is frequently deregulated in cancer cells. p85α regulates the p110α lipid kinase, and also stabilizes and stimulates PTEN, the lipid phosphatase that downregulates this pathway. In this report, we determined that the p85α BH domain binds several phosphorylated phosphoinositide lipids, an interaction that could help localize p85α to membranes rich in these lipids. We also identified key residues responsible for mediating PTEN - p85α complex formation. Based on these experimental results, a docking model for the PTEN - p85α BH domain complex was developed that is consistent with the known binding interactions for both PTEN and p85α. This model involves extensive side-chain and peptide backbone contacts between both the PASE and C2 domains of PTEN with the p85α BH domains. The p85α BH domain residues shown to be important for PTEN binding were p85α residues E212, Q221, K225, R228 and H234. We also verified experimentally the importance of PTEN-E91 in mediating the interaction with the p85α BH domain. These results shed new light on the mechanism of PTEN regulation by p85α.

10.
Sci Rep ; 8(1): 7108, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740032

RESUMO

The p85α protein regulates flux through the PI3K/PTEN signaling pathway, and also controls receptor trafficking via regulation of Rab-family GTPases. In this report, we determined the impact of several cancer patient-derived p85α mutations located within the N-terminal domains of p85α previously shown to bind PTEN and Rab5, and regulate their respective functions. One p85α mutation, L30F, significantly reduced the steady state binding to PTEN, yet enhanced the stimulation of PTEN lipid phosphatase activity. Three other p85α mutations (E137K, K288Q, E297K) also altered the regulation of PTEN catalytic activity. In contrast, many p85α mutations reduced the binding to Rab5 (L30F, I69L, I82F, I177N, E217K), and several impacted the GAP activity of p85α towards Rab5 (E137K, I177N, E217K, E297K). We determined the crystal structure of several of these p85α BH domain mutants (E137K, E217K, R262T E297K) for bovine p85α BH and found that the mutations did not alter the overall domain structure. Thus, several p85α mutations found in human cancers may deregulate PTEN and/or Rab5 regulated pathways to contribute to oncogenesis. We also engineered several experimental mutations within the p85α BH domain and identified L191 and V263 as important for both binding and regulation of Rab5 activity.


Assuntos
PTEN Fosfo-Hidrolase/química , Fosfatidilinositol 3-Quinases/química , Conformação Proteica , Proteínas rab5 de Ligação ao GTP/química , Animais , Bovinos , Dicroísmo Circular , Classe Ia de Fosfatidilinositol 3-Quinase , Cristalografia por Raios X , Humanos , Mutação , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Ligação Proteica/genética , Transporte Proteico/genética , Transdução de Sinais/genética , Proteínas rab5 de Ligação ao GTP/genética
11.
PeerJ ; 4: e1678, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26893965

RESUMO

In the Allonemobius socius complex of crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes. Our recently diverged species generally lacked sequence variation. As a result, ω-based tests were only mildly successful. Some of our genes showed evidence of elevated ω values on the internal branches of gene trees. In a couple of genes, these internal branches coincided with both species branching events of the species tree, between A. fasciatus and the other two species, and between A. socius and A. sp. nov. Tex. In comparison, more successful approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses was arginine kinase (AK) and apolipoprotein A-1 binding protein (APBP). These genes represent two of the first examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among our species, namely conspecific sperm precedence and the superior ability of conspecific males to induce oviposition in females.

12.
Evolution ; 58(11): 2409-25, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15612285

RESUMO

Evidence for the evolution of fertilization incompatibilities and rapid speciation can be biased by the occurrence of hybridization and reproductive endosymbionts such as Wolbachia. For example, patterns of mitochondrial DNA (mtDNA) variation can be obscured by mitotypes hitchhiking on extrachromosomal elements like Wolbachia, while such endosymbionts can also induce phenotypes that mirror the operation of intrinsic fertilization incompatibilities between species. Therefore, before strong inferences can be drawn concerning the rates and processes of speciation in arthropod systems, we must first assess whether extrinsic endosymbionts obscure patterns of speciation. Here, I use the Allonemobius fasciatus-socius species complex to determine what role Wolbachia has played in the presumed rapid divergence of this complex by analyzing patterns of mtDNA and nuclear DNA variation in conjunction with sequence and cytoplasmic incompatibility data on Wolbachia. Data on molecular variation suggest that Wolbachia has not induced a strong selective sweep of the mitochondrial genome; nor does Wolbachia appear to induce cytoplasmic incompatibility. Preliminary evidence indicates that a third species identified within this complex, A. sp. nov. Tex, is partially reproductively isolated from A. socius, its closest relative, via conspecific sperm precedence or some form of postzygotic isolation. Moreover, shared mitotypes between A. sp. nov. Tex and A. socius may indicate the occurrence of a hybrid zone between these species near the border of Texas and Louisiana, although they may also represent shared ancestral polymorphisms. Molecular data also indicate that all three species in this complex diverged from a common ancestor as recently as 3000-30,000 years ago. Finally, the radiation of this complex from its ancestral population likely occurred in the presence of one strain of Wolbachia, thus suggesting a minimal role for Wolbachia during this burst of speciation. In total, barriers to gene flow do appear to have evolved very rapidly in this group of crickets.


Assuntos
Citoplasma/microbiologia , Variação Genética , Gryllidae/fisiologia , Filogenia , Simbiose , Wolbachia/fisiologia , Animais , Sequência de Bases , Primers do DNA , DNA Mitocondrial/genética , Fertilização/genética , Gryllidae/genética , Gryllidae/microbiologia , Haplótipos/genética , Hibridização Genética , Dados de Sequência Molecular , Reprodução/fisiologia , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Estados Unidos
13.
Am Nat ; 159 Suppl 3: S8-S21, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18707372

RESUMO

An intriguing aspect of the current renaissance in investigations of the genetics of reproductive isolation is that it has been dominated by studies that resemble work done in the 1930s, 1940s, and 1950s. The dominant model organism (Drosophila), research approaches, and traits of interest (sterility and inviability of hybrids) all harken back to this earlier era. Herein, we explore the factors that led to a rebirth of interest in the genetics of reproductive isolation and to the adoption of the approaches of an earlier generation of biologists. At the same time, we appeal for more intensive investigations of traits that reproductively isolate closely related species, inclusion of a greater range of organisms in studies of reproductive isolation, and focus on a broader range of questions surrounding speciation. We end with a description of ongoing quantitative trait loci (QTL) studies of conspecific sperm precedence in the ground crickets Allonemobius fasciatus and Allonemobius socius. We have found several QTL with large effects on variance in patterns of sperm utilization in backcross females. Moreover, some QTL have an antagonistic effect on conspecific sperm, a finding that lends support to the hypothesis that rapid evolution of conspecific sperm precedence is a by-product of sexual conflict.

14.
Int J Evol Biol ; 2012: 593438, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251826

RESUMO

Postmating, prezygotic phenotypes are a common mechanism of reproductive isolation. Here, we describe the dynamics of a noncompetitive gametic isolation phenotype (namely, the ability of a male to induce a female to lay eggs) in a group of recently diverged crickets that are primarily isolated from each other by this phenotype. We not only show that heterospecific males are less able to induce females to lay eggs but that there are male by female incompatibilities in this phenotype that occur within populations. We also identify a protein in the female reproductive tract that correlates with the number of eggs that she was induced to lay. Functional genetic tests using RNAi confirm that the function of this protein is linked to egg-laying induction. Moreover, the dysfunction of this protein appears to underlie both within-population incompatibilities and between-species divergence-thus suggesting a common genetic pathway underlies both. However, this is only correlative evidence and further research is needed to assess whether or not the same mutations in the same genes underlie variation at both levels.

15.
PLoS One ; 7(4): e34624, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558093

RESUMO

Bacillus thuringiensis (Bt) crystal (Cry) proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence dataset for T. molitor to date. Furthermore, the methods in this study are useful for comparative analyses in organisms lacking a sequenced genome.


Assuntos
Proteínas de Bactérias/toxicidade , Vias Biossintéticas/efeitos dos fármacos , Endotoxinas/toxicidade , Metabolismo Energético/efeitos dos fármacos , Proteínas Hemolisinas/toxicidade , Tenebrio/efeitos dos fármacos , Tenebrio/metabolismo , Transcriptoma/efeitos dos fármacos , Administração Oral , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/administração & dosagem , Sequência de Bases , DNA Complementar/genética , Endotoxinas/administração & dosagem , Perfilação da Expressão Gênica , Proteínas Hemolisinas/administração & dosagem , Larva/efeitos dos fármacos , Larva/metabolismo , Análise em Microsséries , Dados de Sequência Molecular , Análise de Sequência de DNA , Tenebrio/genética , Fatores de Tempo
17.
PLoS One ; 4(10): e7537, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19851502

RESUMO

Postmating, prezygotic phenotypes, especially those that underlie reproductive isolation between closely related species, have been a central focus of evolutionary biologists over the past two decades. Such phenotypes are thought to evolve rapidly and be nearly ubiquitous among sexually reproducing eukaryotes where females mate with multiple partners. Because these phenotypes represent interplay between the male ejaculate and female reproductive tract, they are fertile ground for reproductive senescence--as ejaculate composition and female physiology typically change over an individual's life span. Although these phenotypes and their resulting dynamics are important, we have little understanding of the proteins that mediate these phenotypes, particularly for species groups where postmating, prezygotic traits are the primary mechanism of reproductive isolation. Here, we utilize proteomics, RNAi, mating experiments, and the Allonemobius socius complex of crickets, whose members are primarily isolated from one another by postmating, prezygotic phenotypes (including the ability of a male to induce a female to lay eggs), to demonstrate that one of the most abundant ejaculate proteins (a male accessory gland-biased protein similar to a trypsin-like serine protease) decreases in abundance over a male's reproductive lifetime and mediates the induction of egg-laying in females. These findings represent one of the first studies to identify a protein that plays a role in mediating both a postmating, prezygotic isolation pathway and reproductive senescence.


Assuntos
Interferência de RNA , Sêmen/metabolismo , Comportamento Sexual Animal , Sequência de Aminoácidos , Animais , Senescência Celular , Etiquetas de Sequências Expressas , Feminino , Gryllidae , Masculino , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Fenótipo , Reprodução , Espermatozoides/metabolismo , Fatores de Tempo
19.
PLoS One ; 2(8): e720, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-17684565

RESUMO

The three species in the Allonemobius socius complex of crickets have recently diverged and radiated across North America. Interestingly, the only barriers to gene flow between these species in zones of secondary contact appear to be associated with fertilization traits - e.g., conspecific sperm precedence and the ability of males to induce females to lay eggs. Other traits, such as the length of female's reproductive tract, may also influence fertilization success and be associated with species boundaries. However, the underlying variation in this duct has not been assessed across populations and species. Moreover, the effects of reproductive parasites like Wolbachia on these morphological features have yet to be addressed, even though its infections are concentrated in reproductive tissues. I evaluated both the natural variation in and the effects of Wolbachia infection on spermathecal duct length among several populations of two species in the Allonemobius socius complex. My results suggest the following: (1) spermathecal duct length varies between species and is associated with species boundaries, (2) there is considerable variation among populations within species, (3) there is a Wolbachia infection-by-population interaction effect on the length of the spermathecal duct, and (4) experimental curing of Wolbachia recovers the uninfected morphology. These findings suggest the following hypotheses: (1) spermathecal duct length, like other fertilization traits in Allonemobius, is evolving rapidly and influences reproductive isolation and (2) Wolbachia-induced modifications of this duct could influence the dynamics of male-female coevolution. Further experiments are needed, however, to explicitly test these latter two hypotheses.


Assuntos
Evolução Biológica , Gryllidae/anatomia & histologia , Gryllidae/microbiologia , Wolbachia/fisiologia , Animais , Tamanho Corporal , Feminino , Fertilização/fisiologia , Especiação Genética , Variação Genética , Gônadas/anatomia & histologia , Gryllidae/classificação , Gryllidae/genética , Masculino , Filogenia
20.
Genetica ; 130(1): 53-60, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-16924406

RESUMO

Wolbachia pipientis, an intracellular, alpha-proteobacterium, is commonly found in arthropods and filarial nematodes. Most infected insects are known to harbor strains of Wolbachia from supergroups A or B, whereas supergroups C and D occur only in filarial nematodes. Here, we present molecular evidence from two genes (ftsZ and 16S rDNA) that 2 Orthopterans (the bush cricket species Orocharis saltator and Hapithus agitator; Gryllidae: Eneopterinae) are infected with Wolbachia from the F supergroup. Additionally, a series of PCR tests revealed that these bush cricket specimens did not harbor nematodes, thus indicating that our positive results were not a by-product of nematodes being present in these cricket samples. Patterns of molecular variation suggest that (1) strains of F supergroup Wolbachia exhibit less genetic variation than the nematode-specific C and D supergroups but more than the A and B supergroups found in arthropods and (2) that there is no evidence of recombination within F supergroup strains. The above data support previous findings that F supergroup Wolbachia is not only harbored in both nematodes and arthropods, but that horizontal transfer has likely occurred recently between these diverse taxonomic groups (although the exact details of such horizontal transmissions remain unclear). Moreover, the limited genetic variation and lack of recombination in the F supergroup suggest that this clade of Wolbachia has radiated relatively rapidly with either (1) little time for recombination to occur or (2) selection against recombination as occurs in the mutualistic C and D strains of Wolbachia - both of which remain to be explored further.


Assuntos
Artrópodes/microbiologia , Transmissão de Doença Infecciosa , Variação Genética , Gryllidae/microbiologia , Nematoides/microbiologia , Wolbachia/genética , Animais , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/genética , DNA Ribossômico/análise , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA