Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Org Biomol Chem ; 20(38): 7658-7663, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134504

RESUMO

Synthetic ionophores able to transport bicarbonate and chloride anions across lipid bilayers are appealing for their wide range of potential biological applications. We have studied the bicarbonate and chloride transport by carbazoles with two amido/thioamido groups using a bicarbonate-sensitive europium(III) probe in liposomes and found a highly remarkable transporter concentration dependence. This can be explained by a combination of two distinct transport mechanisms: HCO3-/Cl- exchange and a combination of unassisted CO2 diffusion and HCl transport, of which the respective contributions were quantified. The compounds studied were found to be highly potent HCl transporters. Based on the mechanistic insights on anion transport, we have tested the antimicrobial activity of these compounds and found a good correlation with their ion transport properties and a high activity against Gram-positive bacteria.


Assuntos
Anti-Infecciosos , Bicarbonatos , Transporte Biológico , Carbazóis , Dióxido de Carbono , Cloretos , Európio , Concentração de Íons de Hidrogênio , Transporte de Íons , Ionóforos/farmacologia , Bicamadas Lipídicas , Lipossomos
2.
Membranes (Basel) ; 12(2)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35207136

RESUMO

Wound management is the burning problem of modern medicine, significantly burdening developed countries' healthcare systems. In recent years, it has become clear that the achievements of nanotechnology have introduced a new quality in wound healing. The application of nanomaterials in wound dressing significantly improves their properties and promotes the healing of injuries. Therefore, this review paper presents the subjectively selected nanomaterials used in wound dressings, including the metallic nanoparticles (NPs), and refers to the aspects of their application as antimicrobial factors. The literature review was supplemented with the results of our team's research on the elements of multifunctional new-generation dressings containing nanoparticles. The wound healing multiple molecular pathways, mediating cell types, and affecting agents are discussed herein. Moreover, the categorization of wound dressings is presented. Additionally, some materials and membrane constructs applied in wound dressings are described. Finally, bacterial participation in wound healing and the mechanism of the antibacterial function of nanoparticles are considered. Membranes involving NPs as the bacteriostatic factors for improving wound healing of skin and bones, including our experimental findings, are discussed in the paper. In addition, some studies of our team concerning the selected bacterial strains' interaction with material involving different metallic NPs, such as AuNPs, AgNPs, Fe3O4NPs, and CuNPs, are presented. Furthermore, nanoparticles' influence on selected eukaryotic cells is mentioned. The ideal, universal wound dressing still has not been obtained; thus, a new generation of products have been developed, represented by the nanocomposite materials with antibacterial, anti-inflammatory properties that can influence the wound-healing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA