Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 61(5): 713-23, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22057677

RESUMO

Guanylyl cyclase C (GUCY2C) is the index cancer mucosa antigen, an emerging class of immunotherapeutic targets for the prevention of recurrent metastases originating in visceral epithelia. GUCY2C is an autoantigen principally expressed by intestinal epithelium, and universally by primary and metastatic colorectal tumors. Immunization with adenovirus expressing the structurally unique GUCY2C extracellular domain (GUCY2C(ECD); Ad5-GUCY2C) produces prophylactic and therapeutic protection against GUCY2C-expressing colon cancer metastases in mice, without collateral autoimmunity. GUCY2C antitumor efficacy is mediated by a unique immunological mechanism involving lineage-specific induction of antigen-targeted CD8(+) T cells, without CD4(+) T cells or B cells. Here, the unusual lineage specificity of this response was explored by integrating high-throughput peptide screening and bioinformatics, revealing the role for GUCY2C-directed CD8(+) T cells targeting specific epitopes in antitumor efficacy. In BALB/c mice vaccinated with Ad5-GUCY2C, CD8(+) T cells recognize the dominant GUCY2C(254-262) epitope in the context of H-2K(d), driving critical effector functions including interferon gamma secretion, cytolysis ex vivo and in vivo, and antitumor efficacy. The ability of GUCY2C to induce lineage-specific responses targeted to cytotoxic CD8(+) T cells recognizing a single epitope mediating antitumor efficacy without autoimmunity highlights the immediate translational potential of cancer mucosa antigen-based vaccines for preventing metastases of mucosa-derived cancers.


Assuntos
Antígenos de Neoplasias/imunologia , Epitopos de Linfócito T/imunologia , Receptores Acoplados a Guanilato Ciclase/imunologia , Receptores de Peptídeos/imunologia , Linfócitos T Citotóxicos/imunologia , Adenoviridae/imunologia , Animais , Autoantígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Imunoterapia/métodos , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mucosa/imunologia , Receptores de Enterotoxina
2.
Cancer Immunol Res ; 6(5): 509-516, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29615399

RESUMO

One major hurdle to the success of adoptive T-cell therapy is the identification of antigens that permit effective targeting of tumors in the absence of toxicities to essential organs. Previous work has demonstrated that T cells engineered to express chimeric antigen receptors (CAR-T cells) targeting the murine homolog of the colorectal cancer antigen GUCY2C treat established colorectal cancer metastases, without toxicity to the normal GUCY2C-expressing intestinal epithelium, reflecting structural compartmentalization of endogenous GUCY2C to apical membranes comprising the intestinal lumen. Here, we examined the utility of a human-specific, GUCY2C-directed single-chain variable fragment as the basis for a CAR construct targeting human GUCY2C-expressing metastases. Human GUCY2C-targeted murine CAR-T cells promoted antigen-dependent T-cell activation quantified by activation marker upregulation, cytokine production, and killing of GUCY2C-expressing, but not GUCY2C-deficient, cancer cells in vitro GUCY2C CAR-T cells provided long-term protection against lung metastases of murine colorectal cancer cells engineered to express human GUCY2C in a syngeneic mouse model. GUCY2C murine CAR-T cells recognized and killed human colorectal cancer cells endogenously expressing GUCY2C, providing durable survival in a human xenograft model in immunodeficient mice. Thus, we have identified a human GUCY2C-specific CAR-T cell therapy approach that may be developed for the treatment of GUCY2C-expressing metastatic colorectal cancer. Cancer Immunol Res; 6(5); 509-16. ©2018 AACR.


Assuntos
Neoplasias Colorretais/terapia , Citotoxicidade Imunológica , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/prevenção & controle , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Enterotoxina , Linfócitos T/transplante , Animais , Células Cultivadas , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Metástase Neoplásica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Oncoimmunology ; 5(10): e1227897, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853651

RESUMO

Adoptive T-cell therapy (ACT) is an emerging paradigm in which T cells are genetically modified to target cancer-associated antigens and eradicate tumors. However, challenges treating epithelial cancers with ACT reflect antigen targets that are not tumor-specific, permitting immune damage to normal tissues, and preclinical testing in artificial xenogeneic models, preventing prediction of toxicities in patients. In that context, mucosa-restricted antigens expressed by cancers exploit anatomical compartmentalization which shields mucosae from systemic antitumor immunity. This shielding may be amplified with ACT platforms employing antibody-based chimeric antigen receptors (CARs), which mediate MHC-independent recog-nition of antigens. GUCY2C is a cancer mucosa antigen expressed on the luminal surfaces of the intestinal mucosa in mice and humans, and universally overexpressed by colorectal tumors, suggesting its unique utility as an ACT target. T cells expressing CARs directed by a GUCY2C-specific antibody fragment recognized GUCY2C, quantified by expression of activation markers and cytokines. Further, GUCY2C CAR-T cells lysed GUCY2C-expressing, but not GUCY2C-deficient, mouse colorectal cancer cells. Moreover, GUCY2C CAR-T cells reduced tumor number and morbidity and improved survival in mice harboring GUCY2C-expressing colorectal cancer metastases. GUCY2C-directed T cell efficacy reflected CAR affinity and surface expression and was achieved without immune-mediated damage to normal tissues in syngeneic mice. These observations highlight the potential for therapeutic translation of GUCY2C-directed CAR-T cells to treat metastatic tumors, without collateral autoimmunity, in patients with metastatic colorectal cancer.

4.
Oncotarget ; 5(19): 9460-71, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25294806

RESUMO

The emergence of targeted cancer therapy has been limited by the paucity of determinants which are tumor-specific and generally associated with disease, and have cell dynamics which effectively deploy cytotoxic payloads. Guanylyl cyclase C (GUCY2C) may be ideal for targeting because it is normally expressed only in insulated barrier compartments, including intestine and brain, but over-expressed by systemic metastatic colorectal tumors. Here, we reveal that GUCY2C rapidly internalizes from the cell surface to lysosomes in intestinal and colorectal cancer cells. Endocytosis is independent of ligand binding and receptor activation, and is mediated by clathrin. This mechanism suggests a design for immunotoxins comprising a GUCY2C-directed monoclonal antibody conjugated through a reducible disulfide linkage to ricin A chain, which is activated to a potent cytotoxin in lysosomes. Indeed, this immunotoxin specifically killed GUCY2C-expressing colorectal cancer cells in a lysosomal- and clathrin-dependent fashion. Moreover, this immunotoxin reduced pulmonary tumors>80% (p<0.001), and improved survival 25% (p<0.001), in mice with established colorectal cancer metastases. Further, therapeutic efficacy was achieved without histologic evidence of toxicity in normal tissues. These observations support GUCY2C-targeted immunotoxins as novel therapeutics for metastatic tumors originating in the GI tract, including colorectum, stomach, esophagus, and pancreas.


Assuntos
Anticorpos Monoclonais/imunologia , Neoplasias Gastrointestinais/tratamento farmacológico , Imunotoxinas/farmacologia , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores de Peptídeos/metabolismo , Ricina/farmacologia , Animais , Anticorpos Monoclonais/administração & dosagem , Caveolinas/metabolismo , Linhagem Celular Tumoral , Clatrina/metabolismo , Portadores de Fármacos , Endocitose , Neoplasias Gastrointestinais/patologia , Imunoterapia , Imunotoxinas/administração & dosagem , Lisossomos , Camundongos , Terapia de Alvo Molecular , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Receptores de Enterotoxina , Ricina/administração & dosagem , Ricina/genética
5.
Biomark Med ; 7(1): 23-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23387482

RESUMO

Throughout the last century medical advances in cancer treatment in the fields of surgery, radiation therapy and chemotherapy have greatly impacted patients' survival rates. Nevertheless, cancer remains a significant cause of mortality, with an estimated 7.6 million deaths worldwide in 2008, reflecting the inability of existing therapies to effectively cure disease. The emergence of vaccines and their successes in preventing the spread of infectious diseases has demonstrated the unique specificity and therapeutic potential of the immune system. This potential has driven the development of novel cancer immunotherapeutics. This review focuses on the current status of the use of immunologic effectors to target known biomarkers in cancer.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Imunoterapia , Neoplasias/terapia , Biomarcadores/metabolismo , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunotoxinas/uso terapêutico , Neoplasias/imunologia , Prognóstico , Linfócitos T/imunologia
6.
Cancer Res ; 73(22): 6654-66, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24085786

RESUMO

Tumorigenesis is a multistep process that reflects intimate reciprocal interactions between epithelia and underlying stroma. However, tumor-initiating mechanisms coordinating transformation of both epithelial and stromal components are not defined. In humans and mice, initiation of colorectal cancer is universally associated with loss of guanylin and uroguanylin, the endogenous ligands for the tumor suppressor guanylyl cyclase C (GUCY2C), disrupting a network of homeostatic mechanisms along the crypt-surface axis. Here, we reveal that silencing GUCY2C in human colon cancer cells increases Akt-dependent TGF-ß secretion, activating fibroblasts through TGF-ß type I receptors and Smad3 phosphorylation. In turn, activating TGF-ß signaling induces fibroblasts to secrete hepatocyte growth factor (HGF), reciprocally driving colon cancer cell proliferation through cMET-dependent signaling. Elimination of GUCY2C signaling in mice (Gucy2c(-/-)) produces intestinal desmoplasia, with increased reactive myofibroblasts, which is suppressed by anti-TGF-ß antibodies or genetic silencing of Akt. Thus, GUCY2C coordinates intestinal epithelial-mesenchymal homeostasis through reciprocal paracrine circuits mediated by TGF-ß and HGF. In that context, GUCY2C signaling constitutes a direct link between the initiation of colorectal cancer and the induction of its associated desmoplastic stromal niche. The recent regulatory approval of oral GUCY2C ligands to treat chronic gastrointestinal disorders underscores the potential therapeutic opportunity for oral GUCY2C hormone replacement to prevent remodeling of the microenvironment essential for colorectal tumorigenesis.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Intestinos/patologia , Receptores Acoplados a Guanilato Ciclase/fisiologia , Receptores de Peptídeos/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Células CACO-2 , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Fibrose , Células HCT116 , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Enterotoxina , Nicho de Células-Tronco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA