Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674372

RESUMO

Socially assistive robots have been used in the care of elderly or dependent people, particularly with patients suffering from neurological diseases, like autism and dementia. There are some proposals, but there are no standardized mechanisms for assessing a particular robot's suitability for specific therapy. This paper reports the evaluation of an acceptance test for assistive robots applied to people with dementia. The proposed test focuses on evaluating the suitability of a robot during therapy sessions. The test measures the rejection of the robot by the patient based on observational data. This test would recommend what kind of robot and what functionalities can be used in therapy. The novelty of this approach is the formalization of a specific validation process that only considers the reaction of the person to whom the robot is applied, and may be used more effectively than existing tests, which may not be adequate for evaluating assistance robots. The test's feasibility was tested by applying it to a set of dementia patients in a specialized care facility.

2.
Cogn Process ; 19(2): 233-244, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29305760

RESUMO

Generation of autonomous behavior for robots is a general unsolved problem. Users perceive robots as repetitive tools that do not respond to dynamic situations. This research deals with the generation of natural behaviors in assistive service robots for dynamic domestic environments, particularly, a motivational-oriented cognitive architecture to generate more natural behaviors in autonomous robots. The proposed architecture, called HiMoP, is based on three elements: a Hierarchy of needs to define robot drives; a set of Motivational variables connected to robot needs; and a Pool of finite-state machines to run robot behaviors. The first element is inspired in Alderfer's hierarchy of needs, which specifies the variables defined in the motivational component. The pool of finite-state machine implements the available robot actions, and those actions are dynamically selected taking into account the motivational variables and the external stimuli. Thus, the robot is able to exhibit different behaviors even under similar conditions. A customized version of the "Speech Recognition and Audio Detection Test," proposed by the RoboCup Federation, has been used to illustrate how the architecture works and how it dynamically adapts and activates robots behaviors taking into account internal variables and external stimuli.


Assuntos
Motivação , Robótica/métodos , Software , Humanos
3.
Multimed Tools Appl ; 81(3): 3459-3481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35043045

RESUMO

Facing human activity-aware navigation with a cognitive architecture raises several difficulties integrating the components and orchestrating behaviors and skills to perform social tasks. In a real-world scenario, the navigation system should not only consider individuals like obstacles. It is necessary to offer particular and dynamic people representation to enhance the HRI experience. The robot's behaviors must be modified by humans, directly or indirectly. In this paper, we integrate our human representation framework in a cognitive architecture to allow that people who interact with the robot could modify its behavior, not only with the interaction but also with their culture or the social context. The human representation framework represents and distributes the proxemic zones' information in a standard way, through a cost map. We have evaluated the influence of the decision-making system in human-aware navigation and how a local planner may be decisive in this navigation. The material developed during this research can be found in a public repository (https://github.com/IntelligentRoboticsLabs/social_navigation2_WAF) and instructions to facilitate the reproducibility of the results.

4.
Front Aging Neurosci ; 7: 133, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388764

RESUMO

AIMS: Pilot studies applying a humanoid robot (NAO), a pet robot (PARO) and a real animal (DOG) in therapy sessions of patients with dementia in a nursing home and a day care center. METHODS: In the nursing home, patients were assigned by living units, based on dementia severity, to one of the three parallel therapeutic arms to compare: CONTROL, PARO and NAO (Phase 1) and CONTROL, PARO, and DOG (Phase 2). In the day care center, all patients received therapy with NAO (Phase 1) and PARO (Phase 2). Therapy sessions were held 2 days per week during 3 months. Evaluation, at baseline and follow-up, was carried out by blind raters using: the Global Deterioration Scale (GDS), the Severe Mini Mental State Examination (sMMSE), the Mini Mental State Examination (MMSE), the Neuropsychiatric Inventory (NPI), the Apathy Scale for Institutionalized Patients with Dementia Nursing Home version (APADEM-NH), the Apathy Inventory (AI) and the Quality of Life Scale (QUALID). Statistical analysis included descriptive statistics and non-parametric tests performed by a blinded investigator. RESULTS: In the nursing home, 101 patients (Phase 1) and 110 patients (Phase 2) were included. There were no significant differences at baseline. The relevant changes at follow-up were: (Phase 1) patients in the robot groups showed an improvement in apathy; patients in NAO group showed a decline in cognition as measured by the MMSE scores, but not the sMMSE; the robot groups showed no significant changes between them; (Phase 2) QUALID scores increased in the PARO group. In the day care center, 20 patients (Phase 1) and 17 patients (Phase 2) were included. The main findings were: (Phase 1) improvement in the NPI irritability and the NPI total score; (Phase 2) no differences were observed at follow-up.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA