Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 38(10): 2934-2936, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561195

RESUMO

SUMMARY: High-throughput sequencing of transfer RNAs (tRNA-Seq) is a powerful approach to characterize the cellular tRNA pool. Currently, however, analyzing tRNA-Seq datasets requires strong bioinformatics and programming skills. tRNAstudio facilitates the analysis of tRNA-Seq datasets and extracts information on tRNA gene expression, post-transcriptional tRNA modification levels, and tRNA processing steps. Users need only running a few simple bash commands to activate a graphical user interface that allows the easy processing of tRNA-Seq datasets in local mode. Output files include extensive graphical representations and associated numerical tables, and an interactive html summary report to help interpret the data. We have validated tRNAstudio using datasets generated by different experimental methods and derived from human cell lines and tissues that present distinct patterns of tRNA expression, modification and processing. AVAILABILITY AND IMPLEMENTATION: Freely available at https://github.com/GeneTranslationLab-IRB/tRNAstudio under an open-source GNU GPL v3.0 license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA de Transferência , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , Análise de Sequência de RNA/métodos
2.
Biomolecules ; 10(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105904

RESUMO

Few studies have analyzed the potential of biophysical parameters as markers of cardiac remodeling post-myocardial infarction (MI), particularly in human hearts. Fourier transform infrared spectroscopy (FTIR) illustrates the overall changes in proteins, nucleic acids and lipids in a single signature. The aim of this work was to define the FTIR and lipidomic pattern for human left ventricular remodeling post-MI. A total of nine explanted hearts from ischemic cardiomyopathy patients were collected. Samples from the right ventricle (RV), left ventricle (LV) and infarcted left ventricle (LV INF) were subjected to biophysical (FTIR and differential scanning calorimetry, DSC) and lipidomic (liquid chromatography-high-resolution mass spectrometry, LC-HRMS) studies. FTIR evidenced deep alterations in the myofibers, extracellular matrix proteins, and the hydric response of the LV INF compared to the RV or LV from the same subject. The lipid and esterified lipid FTIR bands were enhanced in LV INF, and both lipid indicators were tightly and positively correlated with remodeling markers such as collagen, lactate, polysaccharides, and glycogen in these samples. Lipidomic analysis revealed an increase in several species of sphingomyelin (SM), hexosylceramide (HexCer), and cholesteryl esters combined with a decrease in glycerophospholipids in the infarcted tissue. Our results validate FTIR indicators and several species of lipids as useful markers of left ventricular remodeling post-MI in humans.


Assuntos
Lipidômica , Infarto do Miocárdio/metabolismo , Remodelação Ventricular , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA