Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Plant J ; 113(1): 92-105, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36401738

RESUMO

Phloridzin is the most abundant polyphenolic compound in apple (Malus × domestica Borkh.), which results from the action of a key phloretin-specific UDP-2'-O-glucosyltransferase (MdPGT1). Here, we simultaneously assessed the effects of targeting MdPGT1 by conventional transgenesis and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing. To this end, we conducted transcriptomic and metabolic analyses of MdPGT1 RNA interference knockdown and genome-edited lines. Knockdown lines exhibited characteristic impairment of plant growth and leaf morphology, whereas genome-edited lines exhibited normal growth despite reduced foliar phloridzin. RNA-sequencing analysis identified a common core of regulated genes, involved in phenylpropanoid and flavonoid pathways. However, we identified genes and processes differentially modulated in stunted and genome-edited lines, including key transcription factors and genes involved in phytohormone signalling. Therefore, we conducted a phytohormone profiling to obtain insight into their role in the phenotypes observed. We found that salicylic and jasmonic acid were increased in dwarf lines, whereas auxin and ABA showed no correlation with the growth phenotype. Furthermore, bioactive brassinosteroids were commonly up-regulated, whereas gibberellin GA4 was distinctively altered, showing a sharp decrease in RNA interference knockdown lines. Expression analysis by reverse transcriptase-quantitative polymerase chain reaction expression analysis further confirmed transcriptional regulation of key factors involved in brassinosteroid and gibberellin interaction. These findings suggest that a differential modulation of phytohormones may be involved in the contrasting effects on growth following phloridzin reduction. The present study also illustrates how CRISPR/Cas9 genome editing can be applied to dissect the contribution of genes involved in phloridzin biosynthesis in apple.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Sistemas CRISPR-Cas , Florizina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Edição de Genes/métodos
2.
BMC Plant Biol ; 24(1): 99, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331743

RESUMO

BACKGROUND: Flavonoids are plant specialised metabolites, which derive from phenylalanine and acetate metabolism. They possess a variety of beneficial characteristics for plants and humans. Several modification steps in the synthesis of tricyclic flavonoids cause for the amazing diversity of flavonoids in plants. The 2-oxoglutarate-dependent dioxygenases (2-ODDs) flavanone 3-hydroxylase (F3H, synonym FHT), flavonol synthase (FLS) and anthocyanidin synthase (ANS, synonym leucoanthocyanidin dioxygenase (LDOX)), catalyse oxidative modifications to the central C ring. They are highly similar and have been shown to catalyse, at least in part, each other's reactions. FLS and ANS have been identified as bifunctional enzymes in many species, including Arabidopsis thaliana, stressing the capability of plants to bypass missing or mutated reaction steps on the way to flavonoid production. However, little is known about such bypass reactions and the flavonoid composition of plants lacking all three central flavonoid 2-ODDs. RESULTS: To address this issue, we generated a f3h/fls1/ans mutant, as well as the corresponding double mutants and investigated the flavonoid composition of this mutant collection. The f3h/fls1/ans mutant was further characterised at the genomic level by analysis of a nanopore DNA sequencing generated genome sequence assembly and at the transcriptomic level by RNA-Seq analysis. The mutant collection established, including the novel double mutants f3h/fls1 and f3h/ans, was used to validate and analyse the multifunctionalities of F3H, FLS1, and ANS in planta. Metabolite analyses revealed the accumulation of eriodictyol and additional glycosylated derivatives in mutants carrying the f3h mutant allele, resulting from the conversion of naringenin to eriodictyol by flavonoid 3'-hydroxylase (F3'H) activity. CONCLUSIONS: We describe the in planta multifunctionality of the three central flavonoid 2-ODDs from A. thaliana and identify a bypass in the f3h/fls1/ans triple mutant that leads to the formation of eriodictyol derivatives. As (homo-)eriodictyols are known as bitter taste maskers, the annotated eriodictyol (derivatives) and in particular the observations made on their in planta production, could provide valuable insights for the creation of novel food supplements.


Assuntos
Arabidopsis , Flavanonas , Humanos , Arabidopsis/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas/metabolismo
3.
Int J Mol Sci ; 21(19)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993084

RESUMO

Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature's treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)-a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17ß-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools.


Assuntos
Produtos Biológicos/química , Simulação por Computador , Descoberta de Drogas , Inibidores Enzimáticos/química , Oxirredutases , Avaliação Pré-Clínica de Medicamentos , Humanos , Oxirredutases/antagonistas & inibidores , Oxirredutases/química
4.
Planta ; 250(6): 2009-2022, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31531781

RESUMO

MAIN CONCLUSION: Ηeat and calcium treatments reprogram sweet cherry fruit metabolism during postharvest senescence as evidenced by changes in respiration, amino acid metabolism, sugars, and secondary metabolites shift. Heat and calcium treatments are used to improve postharvest fruit longevity; however, the exact mechanism remains poorly understood. To characterize the impact of these treatments on sweet cherries metabolism, 'Lapins' fruits were treated with heat or CaCl2 solutions and their combination and subsequently were exposed at room temperature, for up to 4 days, defined as senescence period. Single and combined heat and calcium treatments partially delayed fruit senescence, as evidenced by changes in fruit colour darkening, skin penetration force, and respiration activity. Calcium content was noticeably increased by heat in Ca-treated fruit. Several primary metabolites, including amino acids, organic acids, and alcohols, were decreased in response to both treatments, while many soluble sugars and secondary metabolites were increased within 1 day post-treatment. Changes of several metabolites in heat-treated fruits, especially esculetin, peonidin 3-O-glucoside and peonidin 3-O-galactoside, ribose, pyroglutamate, and isorhamnetin-3-O-rutinoside, were detected. The metabolome of fruit exposed to calcium also displayed substantial modulations, particularly in the levels of galactose, glycerate, aspartate, tryptophan, phospharate rutin, and peonidin 3-O-glucoside. The expression of several genes involved in TCA cycle (MDH1, IDH1, OGDH, SUCLA2, and SDH1-1), pectin degradation (ADPG1) as well as secondary (SK1, 4CL1, HCT, and BAN), amino acids (ALDH18A1, ALDH4A1, GS, GAD, GOT2, OPLAH, HSDH, and SDS), and sugar (PDHA1 and DLAT) metabolism were affected by both treatments. Pathway-specific analysis further revealed the regulation of fruit metabolic programming by heat and calcium. This work provides a comprehensive understanding of metabolic regulation in response to heat and calcium during fruit senescence.


Assuntos
Cálcio/metabolismo , Prunus avium/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Cromatografia Líquida de Alta Pressão , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Temperatura Alta , Redes e Vias Metabólicas , Metabolômica , Prunus avium/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
5.
Eur J Nutr ; 58(1): 63-81, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29124388

RESUMO

PURPOSE: Olive pomace is a major waste product of olive oil production but remains rich in polyphenols and fibres. We measured the potential of an olive pomace-enriched biscuit formulation delivering 17.1 ± 4.01 mg/100 g of hydroxytyrosol and its derivatives, to modulate the composition and metabolic activity of the human gut microbiota. METHODS: In a double-blind, controlled parallel dietary intervention 62 otherwise healthy hypercholesterolemic (total plasma cholesterol 180-240 mg/dl) subjects were randomly assigned to eat 90 g of olive pomace-enriched biscuit (olive-enriched product, OEP) or an isoenergetic control (CTRL) for 8 weeks. Fasted blood samples, 24-h urine and faecal samples were collected before and after dietary intervention for measurement of microbiota, metabolites and clinical parameters. RESULTS: Consumption of OEP biscuits did not impact on the diversity of the faecal microbiota and there was no statistically significant effect on CVD markers. A trend towards reduced oxidized LDL cholesterol following OEP ingestion was observed. At the genus level lactobacilli and Ruminococcus were reduced in OEP compared to CTRL biscuits. A trend towards increased bifidobacteria abundance was observed after OEP ingestion in 16S rRNA profiles, by fluorescent in situ hybridization and by qPCR. Targeted LC-MS revealed significant increases phenolic acid concentrations in 24-h urine following OEP ingestion and 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid, derivatives of hydroxytyrosol, were elevated in blood. A sex effect was apparent in urine small phenolic acid concentrations, and this sex effect was mirrored by statistically significant differences in relative abundances of faecal bacteria between men and women. CONCLUSION: Ingestion of OEP biscuits led to a significant increase in the metabolic output of the gut microbiota with an apparent sex effect possibly linked to differences in microbiota makeup. Increased levels of homovanillic acid and DOPAC, thought to be involved in reducing oxidative LDL cholesterol, were observed upon OEP ingestion. However, OEP did not induce statistically significant changes in either ox-LDL or urinary isoprostane in this study.


Assuntos
Pão , Microbioma Gastrointestinal/efeitos dos fármacos , Hipercolesterolemia/metabolismo , Olea/metabolismo , Extratos Vegetais/farmacologia , Adulto , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/metabolismo , Fatores Sexuais
6.
J Nat Prod ; 82(1): 136-147, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30629444

RESUMO

Tyrosinase (Tyr) catalyzes the rate-limiting step of melanogenesis in human skin and is thus the main target for treating pigmentation disorders today. This has led to an increased research interest in Tyr inhibitors during the last decades, with a frequent focus on polyphenols. In the early stages of drug discovery, it is typical to avoid the high costs of human Tyr by using the more economic mushroom tyrosinase (mh-Tyr). Since some polyphenols are accepted as substrates by mh-Tyr, the present study aimed to more generally investigate this enzyme's specificity toward polyphenols and to discuss its significance in the context of bioactivity-guided fractionation. Mh-Tyr substrates can change the sample color during an inhibition assay, leading to unreliable inhibition constants or to the discontinuation of a bioactivity-guided fractionation campaign. A data set of 56 natural products was investigated and classified into assay interferers (AIs) and noninterferers, using a spectrophotometric and an LC-ESIHRMS assay. Based on these experimental findings, structure-activity relationships defining AIs were deduced and implemented into an in silico tool that will allow for rapid prescreening in the future. We anticipate that these results will aid in the search for new Tyr inhibitors and contribute to the understanding of this enzyme, as well as its optimal use in pharmacological research.


Assuntos
Agaricales/enzimologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/química , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Plant Biotechnol J ; 16(1): 264-271, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28574666

RESUMO

Herbivorous insects use olfactory cues to locate their host plant within a complex olfactory landscape. One such example is the European grapevine moth Lobesia botrana, a key pest of the grape in the Palearctic region, which recently expanded both its geographical and host plant range. Previous studies have showed that a synthetic blend of the three terpenoids, (E)-ß-caryophyllene, (E)-ß-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), was as attractive for the moth as the complete grape odour profile in laboratory conditions. The same studies also showed that the specific ratio of these compounds in the grape bouquet was crucial because a percentage variation in any of the three volatiles resulted in almost complete inhibition of the blend's attractiveness. Here, we report on the creation of stable grapevine transgenic lines, with modified (E)-ß-caryophyllene and (E)-ß-farnesene emission and thus with an altered ratio compared to the original plants. When headspace collections from these plants were tested in wind tunnel behavioural assays, they were less attractive than control extracts. This result was confirmed by testing synthetic blends imitating the ratio found on natural and transformed plants, as well as by testing the plants themselves. With this evidence, we suggest that a strategy based on volatile ratio modification may also interfere with the host-finding behaviour of L. botrana in the field, creating avenues for new pest control methods.


Assuntos
Mariposas/patogenicidade , Vitis/metabolismo , Vitis/parasitologia , Animais , Odorantes , Sesquiterpenos Policíclicos , Sesquiterpenos/metabolismo
8.
Metab Eng ; 48: 218-232, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29890220

RESUMO

Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the limited availability and diversity of anthocyanins commercially have initiated searches for alternative sources of these natural colourants. In plants, high-level production of secondary metabolites, such as anthocyanins, can be achieved by engineering of regulatory genes as well as genes encoding biosynthetic enzymes. We have used tobacco lines which constitutively produce high levels of cyanidin 3-O-rutinoside, delphinidin 3-O-rutinoside or a novel anthocyanin, acylated cyanidin 3-O-(coumaroyl) rutinoside to generate cell suspension cultures. The cell lines are stable in their production rates and superior to conventional plant cell cultures. Scale-up of anthocyanin production in small scale fermenters has been demonstrated. The cell cultures have also proven to be a suitable system for production of 13C-labelled anthocyanins. Our method for anthocyanin production is transferable to other plant species, such as Arabidopsis thaliana, demonstrating the potential of this approach for making a wide range of highly-decorated anthocyanins. The tobacco cell cultures represent a customisable and sustainable alternative to conventional anthocyanin production platforms and have considerable potential for use in industrial and medical applications of anthocyanins.


Assuntos
Antocianinas/biossíntese , Arabidopsis , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Nicotiana , Células Vegetais/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo
9.
Microb Cell Fact ; 17(1): 103, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970082

RESUMO

BACKGROUND: Anthocyanins are polyphenolic pigments which provide pink to blue colours in fruits and flowers. There is an increasing demand for anthocyanins, as food colorants and as health-promoting substances. Plant production of anthocyanins is often seasonal and cannot always meet demand due to low productivity and the complexity of the plant extracts. Therefore, a system of on-demand supply is useful. While a number of other (simpler) plant polyphenols have been successfully produced in the yeast Saccharomyces cerevisiae, production of anthocyanins has not yet been reported. RESULTS: Saccharomyces cerevisiae was engineered to produce pelargonidin 3-O-glucoside starting from glucose. Specific anthocyanin biosynthetic genes from Arabidopsis thaliana and Gerbera hybrida were introduced in a S. cerevisiae strain producing naringenin, the flavonoid precursor of anthocyanins. Upon culturing, pelargonidin and its 3-O-glucoside were detected inside the yeast cells, albeit at low concentrations. A number of related intermediates and side-products were much more abundant and were secreted into the culture medium. To optimize titers of pelargonidin 3-O-glucoside further, biosynthetic genes were stably integrated into the yeast genome, and formation of a major side-product, phloretic acid, was prevented by engineering the yeast chassis. Further engineering, by removing two glucosidases which are known to degrade pelargonidin 3-O-glucoside, did not result in higher yields of glycosylated pelargonidin. In aerated, pH controlled batch reactors, intracellular pelargonidin accumulation reached 0.01 µmol/gCDW, while kaempferol and dihydrokaempferol were effectively exported to reach extracellular concentration of 20 µM [5 mg/L] and 150 µM [44 mg/L], respectively. CONCLUSION: The results reported in this study demonstrate the proof-of-concept that S. cerevisiae is capable of de novo production of the anthocyanin pelargonidin 3-O-glucoside. Furthermore, while current conversion efficiencies are low, a number of clear bottlenecks have already been identified which, when overcome, have huge potential to enhance anthocyanin production efficiency. These results bode very well for the development of fermentation-based production systems for specific and individual anthocyanin molecules. Such systems have both great scientific value for identifying and characterising anthocyanin decorating enzymes as well as significant commercial potential for the production of, on-demand, pure bioactive compounds to be used in the food, health and even pharma industries.


Assuntos
Antocianinas/biossíntese , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Técnicas de Cultura Celular por Lotes , Produtos Biológicos/metabolismo , Vias Biossintéticas , Meios de Cultura , Fermentação , Flavanonas/biossíntese , Flavonoides/biossíntese , Glucose/metabolismo , Quempferóis/biossíntese , Fenilpropionatos/metabolismo , Proteínas de Plantas/química , Estudo de Prova de Conceito , Saccharomyces cerevisiae/genética
10.
Planta ; 246(2): 185-199, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28299441

RESUMO

MAIN CONCLUSION: This work shows that, in tobacco, the ectopic expression of VvMYBPA1 , a grape regulator of proanthocyanidin biosynthesis, up- or down-regulates different branches of the phenylproanoid pathway, in a structure-specific fashion. Proanthocyanidins are flavonoids of paramount importance for animal and human diet. Research interest increasingly tilts towards generating crops enriched with these health-promoting compounds. Flavonoids synthesis is regulated by the MBW transcriptional complex, made of R2R3MYB, bHLH and WD40 proteins, with the MYB components liable for channeling the complex towards specific branches of the pathway. Hence, using tobacco as a model, here, we tested if the ectopic expression of the proanthocyanidin regulator VvMYBPA1 from grape induces the biosynthesis of these compounds in not-naturally committed cells. Here, we show, via targeted transcriptomic and metabolic analyses of primary transgenic lines and their progeny, that VvMYBPA1 alters the phenylpropanoid pathway in tobacco floral organs, in a structure-specific fashion. We also report that a modest VvMYBPA1 expression is sufficient to induce the expression of both proanthocyanidin-specific and early genes of the phenylpropanoid pathway. Consequently, proanthocyanidins and chlorogenic acids are induced or de novo synthetised in floral limbs, tubes and stamens. Other phenylpropanoid branches are conversely induced or depleted according to the floral structure. Our study documents a novel and distinct function of VvMYBPA1 with respect to other MYBs regulating proanthocyanidins. Present findings may have major implications in designing strategies for enriching crops with health-promoting compounds.


Assuntos
Regulação da Expressão Gênica de Plantas , Fenilpropionatos/metabolismo , Proantocianidinas/metabolismo , Fatores de Transcrição/metabolismo , Vitis/genética , Vias Biossintéticas , Flores/genética , Flores/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Metabolômica , Especificidade de Órgãos , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética
11.
Planta ; 246(2): 281-297, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28664422

RESUMO

MAIN CONCLUSION: Metabolite profiling of tuber flesh and peel for selected colored potato varieties revealed cultivar and tissue specific profiles of anthocyanins and other polyphenols with variations in composition and concentration. Starchy tubers of Solanum tuberosum are a staple crop and food in many countries. Among cultivated potato varieties a huge biodiversity exists, including an increasing number of red and purple colored cultivars. This coloration relates to the accumulation of anthocyanins and is supposed to offer nutritional benefits possibly associated with the antioxidative capacity of anthocyanins. However, the anthocyanin composition and its relation to the overall polyphenol constitution in colored potato tubers have not been investigated closely. This study focuses on the phytochemical characterization of the phenolic composition of a variety of colored potato tubers, both for peel and flesh tissues. First, liquid chromatography (LC) separation coupled to UV and mass spectrometry (MS) detection of polyphenolic compounds of potato tubers from 57 cultivars was used to assign groups of potato cultivars differing in their anthocyanin and polyphenol profiles. Tissues from 19 selected cultivars were then analyzed by LC separation coupled to multiple reaction monitoring (MRM) to detect quantitative differences in anthocyanin and polyphenol composition. The measured intensities of 21 anthocyanins present in the analyzed potato cultivars and tissues could be correlated with the specific tuber coloration. Besides secondary metabolites well-known for potato tubers, the metabolic profiling led to the detection of two anthocyanins not described for potato tuber previously, which we tentatively annotated as pelargonidin feruloyl-xylosyl-glucosyl-galactoside and cyanidin 3-p-coumaroylrutinoside-5-glucoside. We detected significant correlations between some of the measured metabolites, as for example the negative correlation between the main anthocyanins of red and blue potato cultivars. Mainly hydroxylation and methylation patterns of the B-ring of dihydroflavonols, leading to the formation of specific anthocyanidin backbones, can be assigned to a distinct coloring of the potato cultivars and tuber tissues. However, basically the same glycosylation and acylation reactions occur regardless of the main anthocyanidin precursor present in the respective red and blue/purple tissue. Thus, the different anthocyanin profiles in red and blue potato cultivars likely relate to superior regulation of the expression and activities of hydroxylases and methyltransferases rather than to differences for downstream glycosyl- and acyltransferases. In this regard, the characterized potato cultivars represent a valuable resource for the molecular analysis of the genetic background and the regulation of anthocyanin side chain modification.


Assuntos
Antocianinas/metabolismo , Tubérculos/metabolismo , Polifenóis/metabolismo , Solanum tuberosum/metabolismo , Antocianinas/análise , Antioxidantes/metabolismo , Vias Biossintéticas , Cromatografia Líquida , Análise por Conglomerados , Genótipo , Espectrometria de Massas , Especificidade de Órgãos , Pigmentação , Pigmentos Biológicos , Tubérculos/genética , Polifenóis/análise , Solanum tuberosum/genética , Especificidade da Espécie
12.
Planta ; 246(2): 201-215, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28314999

RESUMO

MAIN CONCLUSION: As a result of this work, we were able to characterize seven indigenous to Greece Salvia officinalis populations using genetic and metabolomic tools. These tools can be used to select the most promising genotypes, capable to design future breeding programs for high valuable varieties. An initial investigation was carried out to compare the genetic and metabolic diversity in S. officinalis grown in Greece and to discern the relationship between the two sets of data. Analysis of inter-simple sequence repeats (ISSR) revealed significant genetic differences among seven sage populations, which were grouped into three main clusters according to an UPGMA ISSR data-based dendrogram and Principle Coordinate Analysis. 80 loci were scored of which up to 90% were polymorphic at species level. According to the composition of their essential oil, the populations were classified into two chemotypes: 1.8 cineole/α-thujone and α-thujone/1.8 cineole. Additionally, a targeted ultra performance liquid chromatography (UPLC-MS/MS) method was used to qualify and quantify phenolic compounds in methanolic extracts of the seven sage genotypes according to which they were districted in six clusters among the sage populations. The main compounds characterizing the seven genotypes were rosmarinic acid and carnosol, followed by apigenin-7-O-glucoside (Ap7glc), and luteolin-7-O-glucoside (Lu7glc). The correlation between matrices obtained from ISSR data and metabolic profiles was non-significant. However, based on the differences in metabolic fingerprint, we aimed to define populations using as main selection criteria the high polyphenol content and desired essential oil composition, using state to the art analytical tools for the identification of parent lines for breeding programs.


Assuntos
Variação Genética , Metaboloma , Óleos Voláteis/classificação , Polifenóis/metabolismo , Salvia officinalis/genética , Monoterpenos Bicíclicos , Cruzamento , Cicloexanóis/classificação , Cicloexanóis/metabolismo , Eucaliptol , Flavonas/classificação , Flavonas/metabolismo , Genética Populacional , Genótipo , Glucosídeos/classificação , Glucosídeos/metabolismo , Monoterpenos/classificação , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Salvia officinalis/metabolismo
13.
Metab Eng ; 39: 80-89, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27810393

RESUMO

Dihydrochalcones are plant secondary metabolites comprising molecules of significant commercial interest as antioxidants, antidiabetics, or sweeteners. To date, their heterologous biosynthesis in microorganisms has been achieved only by precursor feeding or as minor by-products in strains engineered for flavonoid production. Here, the native ScTSC13 was overexpressed in Saccharomyces cerevisiae to increase its side activity in reducing p-coumaroyl-CoA to p-dihydrocoumaroyl-CoA. De novo production of phloretin, the first committed dihydrochalcone, was achieved by co-expression of additional relevant pathway enzymes. Naringenin, a major by-product of the initial pathway, was practically eliminated by using a chalcone synthase from barley with unexpected substrate specificity. By further extension of the pathway from phloretin with decorating enzymes with known specificities for dihydrochalcones, and by exploiting substrate flexibility of enzymes involved in flavonoid biosynthesis, de novo production of the antioxidant molecule nothofagin, the antidiabetic molecule phlorizin, the sweet molecule naringin dihydrochalcone, and 3-hydroxyphloretin was achieved.


Assuntos
Chalconas/biossíntese , Hipoglicemiantes/metabolismo , Engenharia Metabólica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Edulcorantes/metabolismo , Antioxidantes/administração & dosagem , Vias Biossintéticas/fisiologia , Chalconas/administração & dosagem , Melhoramento Genético/métodos , Hipoglicemiantes/administração & dosagem , Redes e Vias Metabólicas/fisiologia , Edulcorantes/administração & dosagem
14.
J Sci Food Agric ; 97(12): 4180-4189, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28239870

RESUMO

BACKGROUND: The assessment of the relative contribution of genotype, environment and the genotype-by-environmental (G × E) interaction to the performance of varieties is necessary when determining adaptation capacity. RESULTS: The influence of temperature, ultraviolet (UV)-irradiation and sunshine duration on the quality and the composition of fruits was investigated in nine strawberry cultivars grown at three different altitudes. The UV-radiation intensity affected both pH and sugar content, which were higher for most of the varieties at low altitudes, whereas total titratable acidity was less. Fruits from plants grown at low elevation generally had a higher benzoic acid derivative content. A significant correlation was found between phenylpropanoid content and UV-radiation and sunshine duration. The flavone class appeared to be affected most by the variety effect, in contrast to flavonols and ellagitannins, which were highly affected by the environment. The accumulation of a number of secondary metabolites in strawberry fruits grown in an unusual environmental condition highlighted the acclimation effects in terms of the response of plants to abiotic stress. Finally, the genetic factor only appears to be more influential for the varieties 'Sveva' and 'Marmolada' with respect to all of the parameters considered. CONCLUSION: A 'plant environmental metabolomics' approach has been used successfully to assess the phenotypic plasticity of varieties that showed different magnitudes with respect to the relationship between environmental conditions and the accumulation of healthy compounds. © 2017 Society of Chemical Industry.


Assuntos
Fragaria/química , Fragaria/genética , Extratos Vegetais/química , Antioxidantes/química , Clima , Meio Ambiente , Aromatizantes/química , Fragaria/efeitos da radiação , Frutas/química , Frutas/genética , Frutas/efeitos da radiação , Interação Gene-Ambiente , Genótipo , Raios Ultravioleta
15.
BMC Plant Biol ; 16: 95, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27098458

RESUMO

BACKGROUND: Carotenoids are important pigments and precursors for central signaling molecules associated in fruit development and ripening. Carotenoid metabolism has been studied especially in the climacteric tomato fruit but the content of carotenoids and the regulation of their metabolism have been shown to be highly variable between fruit species. Non-climacteric berries of the genus Vaccinium are among the best natural sources of health-beneficial flavonoids but not studied previously for carotenoid biosynthesis. RESULTS: In this study, carotenoid biosynthetic genes, PSY, PDS, ZDS, CRTISO, LCYB, LCYE, BCH and CYP450-BCH, as well as a carotenoid cleavage dioxygenase CCD1 were identified from bilberry (V. myrtillus L.) fruit and their expression was studied along with carotenoid composition during fruit development under different photoperiod and light quality conditions. Bilberry was found to be a good source of carotenoids among fruits and berries. The most abundant carotenoids throughout the berry development were lutein and ß-carotene, which were accompanied by lower amounts of 9Z-ß-carotene, violaxanthin, neoxanthin, zeaxanthin, antheraxanthin and ß-cryptoxanthin. The expression patterns of the biosynthetic genes in ripening fruits indicated a metabolic flux towards ß-branch of the carotenoid pathway. However, the carotenoid levels decreased in both the ß-branch and ε,ß-branch towards bilberry fruit ripening along with increased VmCCD1 expression, similarly to VmNCED1, indicating enzymatic carotenoid cleavage and degradation. Intense white light conditions increased the expression of the carotenoid biosynthetic genes but also the expression of the cleavage genes VmCCD1 and VmNCED1, especially in unripe fruits. Instead, mature bilberry fruits responded specifically to red/far-red light wavelengths by inducing the expression of both the carotenoid biosynthetic and the cleavage genes indicating tissue and developmental stage specific regulation of apocarotenoid formation by light quality. CONCLUSIONS: This is the first report of carotenoid biosynthesis in Vaccinium berries. Our results indicate that both transcriptional regulation of the key biosynthetic genes and the enzymatic degradation of the produced carotenoids to apocarotenoids have significant roles in the determination of the carotenoid content and have overall effect on the metabolism during the bilberry fruit ripening.


Assuntos
Vias Biossintéticas/efeitos da radiação , Carotenoides/metabolismo , Frutas/metabolismo , Luz , Vaccinium myrtillus/metabolismo , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Dioxigenases/genética , Dioxigenases/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vaccinium myrtillus/genética , Vaccinium myrtillus/crescimento & desenvolvimento
16.
Plant Biotechnol J ; 14(10): 2033-44, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26997489

RESUMO

Varieties resistant to powdery mildew (PM; caused by Podosphaera leucotricha) are a major component of sustainable apple production. Resistance can be achieved by knocking-out susceptibility S-genes to be singled out among members of the MLO (Mildew Locus O) gene family. Candidates are MLO S-genes of phylogenetic clade V up-regulated upon PM inoculation, such as MdMLO11 and 19 (clade V) and MdMLO18 (clade VII). We report the knock-down through RNA interference of MdMLO11 and 19, as well as the complementation of resistance with MdMLO18 in the Arabidopsis thaliana triple mlo mutant Atmlo2/6/12. The knock-down of MdMLO19 reduced PM disease severity by 75%, whereas the knock-down of MdMLO11, alone or in combination with MdMLO19, did not result in any reduction or additional reduction of susceptibility compared with MdMLO19 alone. The test in A. thaliana excluded a role for MdMLO18 in PM susceptibility. Cell wall appositions (papillae) were present in both PM-resistant and PM-susceptible plants, but were larger in resistant lines. No obvious negative phenotype was observed in plants with mlo genes knocked down. Apparently, MdMLO19 plays the pivotal role in apple PM susceptibility and its knock-down induces a very significant level of resistance.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , Plantas Geneticamente Modificadas/microbiologia , Técnicas de Silenciamento de Genes , Malus/genética , Malus/metabolismo , Malus/microbiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Interferência de RNA
17.
J Exp Bot ; 67(8): 2299-308, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26884604

RESUMO

Ellagic acid/ellagitannins are plant polyphenolic antioxidants that are synthesized from gallic acid and have been associated with a reduced risk of cancer and cardiovascular diseases. Here, we report the identification and characterization of five glycosyltransferases (GTs) from two genera of the Rosaceae family (Fragaria and Rubus; F. × ananassa FaGT2*, FaGT2, FaGT5, F. vesca FvGT2, and R. idaeus RiGT2) that catalyze the formation of 1-O-galloyl-ß-D-glucopyranose (ß-glucogallin) the precursor of ellagitannin biosynthesis. The enzymes showed substrate promiscuity as they formed glucose esters of a variety of (hydroxyl)benzoic and (hydroxyl)cinnamic acids. Determination of kinetic values and site-directed mutagenesis revealed amino acids that affected substrate preference and catalytic activity. Green immature strawberry fruits were identified as the main source of gallic acid, ß-glucogallin, and ellagic acid in accordance with the highest GT2 gene expression levels. Injection of isotopically labeled gallic acid into green fruits of stable transgenic antisense FaGT2 strawberry plants clearly confirmed the in planta function. Our results indicate that GT2 enzymes might contribute to the production of ellagic acid/ellagitannins in strawberry and raspberry, and are useful to develop strawberry fruit with additional health benefits and for the biotechnological production of bioactive polyphenols.


Assuntos
Ácido Elágico/metabolismo , Fragaria/metabolismo , Taninos Hidrolisáveis/metabolismo , Rubus/metabolismo , Sequência de Aminoácidos , Ácido Elágico/química , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Cinética , Metabolômica , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Uridina Difosfato Glucose/metabolismo
18.
Planta ; 242(3): 601-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26093654

RESUMO

MAIN CONCLUSION: Identification of distinct allelic versions for dihydroflavonol 4-reductase in gerbera cultivars reveals that gerbera DFR enzymes have strong substrate preference in vivo that is not reflected to the activity in vitro. Flavonoids in the model ornamental plant Gerbera hybrida consist of flavones, flavonols and anthocyanins. Anthocyanins accumulate in the adaxial epidermis of petals and give the different cultivars their characteristic red and violet colour. Both pelargonidin and cyanidin derivatives are found in gerbera, but none of the cultivars contain delphinidin. 'Ivory', a cultivar with white petals, is a sport of the pelargonidin-containing pink cultivar 'Estelle', i.e. it originates from an acyanic branch of 'Estelle'. In this work, four different alleles encoding dihydroflavonol 4-reductase (DFR) were identified in gerbera cultivars. We found that, in contrast to 'Estelle' with the functional allele GDFR1-2, 'Ivory' carries a mutation in this gene that results in an inactive enzyme. Interestingly, 'Ivory' also expresses a second, nonmutated allele (GDFR1-3) in petal epidermi, leading to extractable DFR activity but not to anthocyanin biosynthesis. The second allele encodes a protein identical in amino acid sequence to the DFR of the cyanidin-containing variety 'President'. Pelargonidin-containing cultivars do not react to the flavonoid 3'-hydroxylase inhibitor tetcyclacis, but cyanidin-containing cultivars lose their colour, instead of starting to synthesise pelargonidins, indicating the specificity of GDFR1-3 for the cyanidin pathway. This explains why petals of 'Ivory' are white, even when it has lost only one of the two enzymatically functional DFR forms, and shows that anthocyanin biosynthesis in gerbera is under more complex regulation than earlier thought.


Assuntos
Antocianinas/metabolismo , Asteraceae/metabolismo , Oxirredutases do Álcool/metabolismo , Asteraceae/enzimologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
BMC Plant Biol ; 14: 377, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25511869

RESUMO

BACKGROUND: Light is one of the most significant environmental factors affecting to the accumulation of flavonoids in fruits. The composition of the light spectrum has been shown to affect the production of phenolic compounds during fruit ripening. However, specific information on the biosynthesis of flavonoids in fruits in response to different wavelengths of light is still scarce. In the present study bilberry (Vaccinium myrtillus L.) fruits, which are known to be rich with anthocyanin compounds, were illuminated with blue, red, far-red or white light during the berry ripening process. Following the illumination, the composition of anthocyanins and other phenolic compounds was analysed at the mature ripening stage of fruits. RESULTS: All the three monochromatic light treatments had significant positive effect on the accumulation of total anthocyanins in ripe fruits compared to treatment with white light or plants kept in darkness. The elevated levels of anthocyanins were mainly due to a significant increase in the accumulation of delphinidin glycosides. A total of 33 anthocyanin compounds were detected in ripe bilberry fruits, of which six are novel in bilberry (cyanidin acetyl-3-O-galactose, malvidin acetyl-3-O-galactose, malvidin coumaroyl-3-O-galactose, malvidin coumaroyl-3-O-glucose, delphinidin coumaroyl-3-O-galactose, delphinidin coumaroyl-3-O-glucose). CONCLUSIONS: Our results indicate that the spectral composition of light during berry development has significant effect on the flavonoid composition of ripe bilberry fruits.


Assuntos
Antocianinas/metabolismo , Flavonoides/biossíntese , Frutas/efeitos da radiação , Luz , Fenóis/metabolismo , Vaccinium myrtillus/efeitos da radiação , Antocianinas/efeitos da radiação , Cromatografia Líquida de Alta Pressão , Flavonoides/genética , Flavonoides/efeitos da radiação , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Fenóis/efeitos da radiação , Reação em Cadeia da Polimerase , Espectrometria de Massas em Tandem , Vaccinium myrtillus/crescimento & desenvolvimento , Vaccinium myrtillus/metabolismo
20.
J Agric Food Chem ; 72(20): 11804-11819, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717061

RESUMO

Apples (Malus × domestica Borkh.) and pears (Pyrus communis L.) are valuable crops closely related within the Rosaceae family with reported nutraceutical properties derived from secondary metabolites including phloridzin and arbutin, which are distinctive phenolic metabolites characterizing apples and pears, respectively. Here, we generated a de novo transcriptome assembly of an intergeneric hybrid between apple and pear, accumulating intermediate levels of phloridzin and arbutin. Combining RNA-seq, in silico functional annotation prediction, targeted gene expression analysis, and expression-metabolite correlations, we identified candidate genes for functional characterization, resulting in the identification of active arbutin synthases in the hybrid and parental genotypes. Despite exhibiting an active arbutin synthase in vitro, the natural lack of arbutin in apples is reasoned by the absence of the substrate and broad substrate specificity. Altogether, our study serves as the basis for future assessment of potential physiological roles of identified genes by genome editing of hybrids and pears.


Assuntos
Arbutina , Chalconas , Frutas , Malus , Proteínas de Plantas , Pyrus , Transcriptoma , Malus/genética , Malus/metabolismo , Malus/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Pyrus/genética , Pyrus/metabolismo , Pyrus/química , Arbutina/metabolismo , Arbutina/química , Frutas/genética , Frutas/metabolismo , Frutas/química , Chalconas/metabolismo , Chalconas/química , Regulação da Expressão Gênica de Plantas , Hibridização Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA