Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Anal Chem ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028894

RESUMO

Open mass spectral libraries (OMSLs) are critical for metabolite annotation and machine learning, especially given the rising volume of untargeted metabolomic studies and the development of annotation pipelines. Despite their importance, the practical application of OMSLs is hampered by the lack of standardized file formats, metadata fields, and supporting ontology. Current libraries, often restricted to specific topics or matrices, such as natural products, lipids, or the human metabolome, may limit the discovery potential of untargeted studies. The goal of FragHub is to provide users with the capability to integrate various OMSLs into a single unified format, thereby enhancing the annotation accuracy and reliability. FragHub addresses these challenges by integrating multiple OMSLs into a single comprehensive database, supporting various data formats, and harmonizing metadata. It also proposes some generic filters for the mass spectrum using a graphical user interface. Additionally, a workflow to generate in-house libraries compatible with FragHub is proposed. FragHub dynamically segregates libraries based on ionization modes and chromatography techniques, thereby enhancing data utility in metabolomic research. The FragHub Python code is publicly available under a MIT license, at the following repository: https://github.com/eMetaboHUB/FragHub. Generated data can be accessed at 10.5281/zenodo.11057687.

2.
Environ Microbiol ; 25(2): 454-472, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36451580

RESUMO

The symbioses between plants of the Rubiaceae and Primulaceae families with Burkholderia bacteria represent unique and intimate plant-bacterial relationships. Many of these interactions have been identified through PCR-dependent typing methods, but there is little information available about their functional and ecological roles. We assembled 17 new endophyte genomes representing endophytes from 13 plant species, including those of two previously unknown associations. Genomes of leaf endophytes belonging to Burkholderia s.l. show extensive signs of genome reduction, albeit to varying degrees. Except for one endophyte, none of the bacterial symbionts could be isolated on standard microbiological media. Despite their taxonomic diversity, all endophyte genomes contained gene clusters linked to the production of specialized metabolites, including genes linked to cyclitol sugar analog metabolism and in one instance non-ribosomal peptide synthesis. These genes and gene clusters are unique within Burkholderia s.l. and are likely horizontally acquired. We propose that the acquisition of secondary metabolite gene clusters through horizontal gene transfer is a prerequisite for the evolution of a stable association between these endophytes and their hosts.


Assuntos
Burkholderia , Ciclitóis , Humanos , Burkholderia/genética , Simbiose/genética , Endófitos/genética , Plantas/microbiologia , Folhas de Planta/microbiologia , Filogenia
3.
Proc Natl Acad Sci U S A ; 117(44): 27627-27636, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087565

RESUMO

Dengue virus (DENV) subdues cell membranes for its cellular cycle by reconfiguring phospholipids in humans and mosquitoes. Here, we determined how and why DENV reconfigures phospholipids in the mosquito vector. By inhibiting and activating the de novo phospholipid biosynthesis, we demonstrated the antiviral impact of de novo-produced phospholipids. In line with the virus hijacking lipids for its benefit, metabolomics analyses indicated that DENV actively inhibited the de novo phospholipid pathway and instead triggered phospholipid remodeling. We demonstrated the early induction of remodeling during infection by using isotope tracing in mosquito cells. We then confirmed in mosquitoes the antiviral impact of de novo phospholipids by supplementing infectious blood meals with a de novo phospholipid precursor. Eventually, we determined that phospholipid reconfiguration was required for viral genome replication but not for the other steps of the virus cellular cycle. Overall, we now propose that DENV reconfigures phospholipids through the remodeling cycle to modify the endomembrane and facilitate formation of the replication complex. Furthermore, our study identified de novo phospholipid precursor as a blood determinant of DENV human-to-mosquito transmission.


Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/transmissão , Mosquitos Vetores/virologia , Fosfolipídeos/biossíntese , Aedes/enzimologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/patogenicidade , Genoma Viral , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Metabolismo dos Lipídeos/genética , Redes e Vias Metabólicas/genética , Metabolômica , Mosquitos Vetores/enzimologia , Interferência de RNA , RNA Viral/metabolismo , Replicação Viral
4.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499572

RESUMO

Diazotrophic bacteria isolated from the rhizosphere of a wild wheat ancestor, grown from its refuge area in the Fertile Crescent, were found to be efficient Plant Growth-Promoting Rhizobacteria (PGPR), upon interaction with an elite wheat cultivar. In nitrogen-starved plants, they increased the amount of nitrogen in the seed crop (per plant) by about twofold. A bacterial growth medium was developed to investigate the effects of bacterial exudates on root development in the elite cultivar, and to analyze the exo-metabolomes and exo-proteomes. Altered root development was observed, with distinct responses depending on the strain, for instance, with respect to root hair development. A first conclusion from these results is that the ability of wheat to establish effective beneficial interactions with PGPRs does not appear to have undergone systematic deep reprogramming during domestication. Exo-metabolome analysis revealed a complex set of secondary metabolites, including nutrient ion chelators, cyclopeptides that could act as phytohormone mimetics, and quorum sensing molecules having inter-kingdom signaling properties. The exo-proteome-comprised strain-specific enzymes, and structural proteins belonging to outer-membrane vesicles, are likely to sequester metabolites in their lumen. Thus, the methodological processes we have developed to collect and analyze bacterial exudates have revealed that PGPRs constitutively exude a highly complex set of metabolites; this is likely to allow numerous mechanisms to simultaneously contribute to plant growth promotion, and thereby to also broaden the spectra of plant genotypes (species and accessions/cultivars) with which beneficial interactions can occur.


Assuntos
Microbiologia do Solo , Triticum , Triticum/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Bactérias , Desenvolvimento Vegetal , Plantas , Nitrogênio/metabolismo , Exsudatos de Plantas/metabolismo
5.
PLoS Pathog ; 15(12): e1008199, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31815960

RESUMO

More than half of the world population is at risk of dengue virus (DENV) infection because of the global distribution of its mosquito vectors. DENV is an envelope virus that relies on host lipid membranes for its life-cycle. Here, we characterized how DENV hijacks the mosquito lipidome to identify targets for novel transmission-blocking interventions. To describe metabolic changes throughout the mosquito DENV cycle, we deployed a Liquid chromatography-high resolution mass spectrometry (LC-HRMS) workflow including spectral similarity annotation in cells, midguts and whole mosquitoes at different times post infection. We revealed a major aminophospholipid reconfiguration with an overall early increase, followed by a reduction later in the cycle. We phylogenetically characterized acylglycerolphosphate acyltransferase (AGPAT) enzyme isoforms to identify those that catalyze a rate-limiting step in phospholipid biogenesis, the acylation of lysophosphatidate to phosphatidate. We showed that DENV infection decreased AGPAT1, but did not alter AGPAT2 expression in cells, midguts and mosquitoes. Depletion of either AGPAT1 or AGPAT2 increased aminophospholipids and partially recapitulated DENV-induced reconfiguration before infection in vitro. However, only AGPAT1 depletion promoted infection by maintaining high aminophospholipid concentrations. In mosquitoes, AGPAT1 depletion also partially recapitulated DENV-induced aminophospholipid increase before infection and enhanced infection by maintaining high aminophospholipid concentrations. These results indicate that DENV inhibition of AGPAT1 expression promotes infection by increasing aminophospholipids, as observed in the mosquito's early DENV cycle. Furthermore, in AGPAT1-depleted mosquitoes, we showed that enhanced infection was associated with increased consumption/redirection of aminophospholipids. Our study suggests that DENV regulates aminophospholipids, especially phosphatidylcholine and phosphatidylethanolamine, by inhibiting AGPAT1 expression to increase aminophospholipid availability for virus multiplication.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Vírus da Dengue/metabolismo , Proteínas de Insetos/metabolismo , Mosquitos Vetores/metabolismo , Mosquitos Vetores/virologia , Aedes , Animais , Interações Hospedeiro-Parasita/fisiologia , Fosfolipídeos/metabolismo
6.
Anal Chem ; 92(14): 9971-9981, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32589017

RESUMO

Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) is currently the gold-standard technique to determine the full chemical diversity in biological samples. However, this approach still has many limitations; notably, the difficulty of accurately estimating the number of unique metabolites profiled among the thousands of MS ion signals arising from chromatograms. Here, we describe a new workflow, MS-CleanR, based on the MS-DIAL/MS-FINDER suite, which tackles feature degeneracy and improves annotation rates. We show that implementation of MS-CleanR reduces the number of signals by nearly 80% while retaining 95% of unique metabolite features. Moreover, the annotation results from MS-FINDER can be ranked according to the database chosen by the user, which enhance identification accuracy. Application of MS-CleanR to the analysis of Arabidopsis thaliana grown in three different conditions fostered class separation resulting from multivariate data analysis and led to annotation of 75% of the final features. The full workflow was applied to metabolomic profiles from three strains of the leguminous plant Medicago truncatula that have different susceptibilities to the oomycete pathogen Aphanomyces euteiches. A group of glycosylated triterpenoids overrepresented in resistant lines were identified as candidate compounds conferring pathogen resistance. MS-CleanR is implemented through a Shiny interface for intuitive use by end-users (available at https://github.com/eMetaboHUB/MS-CleanR).


Assuntos
Arabidopsis/metabolismo , Medicago truncatula/metabolismo , Metabolômica , Software , Cromatografia Líquida de Alta Pressão , Bases de Dados Factuais , Espectrometria de Massas
7.
Molecules ; 24(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200456

RESUMO

Phytochemical extracts are highly complex chemical mixtures. In the context of an increasing demand for phytopharmaceuticals, assessment of the phytochemical equivalence of extraction procedures is of utmost importance. Compared to routine analytical methods, comprehensive metabolite profiling has pushed forward the concept of phytochemical equivalence. In this study, an untargeted metabolomic approach was used to cross-compare four marketed extracts from Serenoa repens obtained with three different extraction processes: ethanolic, hexanic and sCO2 (supercritical carbon dioxide). Our approach involved a biphasic extraction of native compounds followed by liquid chromatography coupled to a high-resolution mass spectrometry based metabolomic workflow. Our results showed significant differences in the contents of major and minor compounds according to the extraction solvent used. The analyses showed that ethanolic extracts were supplemented in phosphoglycerides and polyphenols, hexanic extracts had higher amounts of free fatty acids and minor compounds, and sCO2 samples contained more glycerides. The discriminant model in this study could predict the extraction solvent used in commercial samples and highlighted the specific biomarkers of each process. This metabolomic survey allowed the authors to assess the phytochemical content of extracts and finished products of S. repens and unequivocally established that sCO2, hexanic and ethanolic extracts are not chemically equivalent and are therefore unlikely to be pharmacologically equivalent.


Assuntos
Produtos Biológicos/química , Metabolômica/métodos , Serenoa/química , Ácidos Graxos/química , Glicerofosfolipídeos/química , Espectrometria de Massas , Compostos Fitoquímicos/química , Extratos Vegetais/química , Polifenóis/química
8.
Molecules ; 24(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835791

RESUMO

With an estimated annual incidence of one million cases, leishmaniasis is one of the top five vector-borne diseases. Currently available medical treatments involve side effects, including toxicity, non-specific targeting, and resistance development. Thus, new antileishmanial chemical entities are of the utmost interest to fight against this disease. The aim of this study was to obtain potential antileishmanial natural products from Psidium guajava leaves using a metabolomic workflow. Several crude extracts from P. guajava leaves harvested from different locations in the Lao People's Democratic Republic (Lao PDR) were profiled by liquid chromatography coupled to high-resolution mass spectrometry, and subsequently evaluated for their antileishmanial activities. The putative active compounds were highlighted by multivariate correlation analysis between the antileishmanial response and chromatographic profiles of P. guajava mixtures. The results showed that the pooled apolar fractions from P. guajava were the most active (IC50 = 1.96 ± 0.47 µg/mL). Multivariate data analysis of the apolar fractions highlighted a family of triterpenoid compounds, including jacoumaric acid (IC50 = 1.318 ± 0.59 µg/mL) and corosolic acid (IC50 = 1.01 ± 0.06 µg/mL). Our approach allowed the identification of antileishmanial compounds from the crude extracts in only a small number of steps and can be easily adapted for use in the discovery workflows of several other natural products.


Assuntos
Antiprotozoários/análise , Metabolômica/métodos , Compostos Fitoquímicos/análise , Psidium/química , Antiprotozoários/farmacologia , Cromatografia Líquida , Concentração Inibidora 50 , Laos , Leishmania/efeitos dos fármacos , Espectrometria de Massas , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Triterpenos/química , Triterpenos/farmacologia
9.
Malar J ; 17(1): 68, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402267

RESUMO

BACKGROUND: Plasmodium falciparum malaria is still one of the most deadly pathology worldwide. Efficient treatment is jeopardized by parasite resistance to artemisinin and its derivatives, and by poor access to treatment in endemic regions. Anti-malarial traditional remedies still offer new tracks for identifying promising antiplasmodial molecules, and a way to ensure that all people have access to care. The present study aims to validate the traditional use of Terminalia macroptera, a Malian plant used in traditional medicine. METHODS: Terminalia macroptera was collected in Mali. Leaves (TML) and roots ethanolic extracts (TMR) were prepared and tested at 2000 mg/kg for in vivo acute toxicity in Albino Swiss mice. Antiplasmodial activity of the extracts was assessed against a chloroquine resistant strain P. falciparum (FcB1) in vitro. In vivo, anti-malarial efficacy was assessed by a 4-day suppressive test at 100 mg/kg in two malaria murine models of uncomplicated malaria (Plasmodium chabaudi chabaudi infection) and cerebral malaria (Plasmodium berghei strain ANKA infection). Constituents of TMR were characterized by ultra-high-performance liquid chromatography coupled to high resolution mass spectrometry. Top ranked compounds were putatively identified using plant databases and in silico fragmentation pattern. RESULTS: Lethal dose of TML and TMR were greater than 2000 mg/kg in Albino Swiss mice. According to the OECD's Globally Harmonized System of Classification, both extracts are non-toxic orally. Antiplasmodial activity of T. macroptera extracts was confirmed in vitro against P. falciparum FcB1 strain with IC50 values of 1.2 and 1.6 µg/mL for TML and TMR, respectively. In vivo, oral administration of TML and TMR induced significant reduction of parasitaemia (37.2 and 46.4% respectively) in P. chabaudi chabaudi infected mice at the 7th day of infection compared to untreated mice. In the cerebral malaria experimental model, mice treated with TMR and TML presented respectively 50 and 66.7% survival rates at day 9 post-infection when all untreated mice died. Eleven major compounds were found in TMR. Among them, several molecules already known could be responsible for the antiplasmodial activity of the roots extract of T. macroptera. CONCLUSIONS: This study confirms both safety and anti-malarial activity of T. macroptera, thus validating its traditional use.


Assuntos
Antimaláricos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium chabaudi/efeitos dos fármacos , Terminalia/química , Animais , Feminino , Mali , Medicina Tradicional , Camundongos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Raízes de Plantas/química , Plantas Medicinais , Testes de Toxicidade Aguda
10.
Proc Natl Acad Sci U S A ; 112(21): 6754-9, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25947154

RESUMO

Root systems consist of different root types (RTs) with distinct developmental and functional characteristics. RTs may be individually reprogrammed in response to their microenvironment to maximize adaptive plasticity. Molecular understanding of such specific remodeling--although crucial for crop improvement--is limited. Here, RT-specific transcriptomes of adult rice crown, large and fine lateral roots were assessed, revealing molecular evidence for functional diversity among individual RTs. Of the three rice RTs, crown roots displayed a significant enrichment of transcripts associated with phytohormones and secondary cell wall (SCW) metabolism, whereas lateral RTs showed a greater accumulation of transcripts related to mineral transport. In nature, arbuscular mycorrhizal (AM) symbiosis represents the default state of most root systems and is known to modify root system architecture. Rice RTs become heterogeneously colonized by AM fungi, with large laterals preferentially entering into the association. However, RT-specific transcriptional responses to AM symbiosis were quantitatively most pronounced for crown roots despite their modest physical engagement in the interaction. Furthermore, colonized crown roots adopted an expression profile more related to mycorrhizal large lateral than to noncolonized crown roots, suggesting a fundamental reprogramming of crown root character. Among these changes, a significant reduction in SCW transcripts was observed that was correlated with an alteration of SCW composition as determined by mass spectrometry. The combined change in SCW, hormone- and transport-related transcript profiles across the RTs indicates a previously overlooked switch of functional relationships among RTs during AM symbiosis, with a potential impact on root system architecture and functioning.


Assuntos
Glomeromycota/fisiologia , Micorrizas/fisiologia , Oryza/genética , Oryza/microbiologia , Transcriptoma , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Hidroxibenzoatos/metabolismo , Minerais/metabolismo , Oryza/fisiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Supressão Genética , Simbiose/genética , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA