Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338962

RESUMO

Phosphorus-containing metabolites occupy a prominent position in cell pathways. The phosphorometabolomic approach in human sperm samples will deliver valuable information as new male fertility biomarkers could emerge. This study analyzed, by 31P-NMR, seminal plasma and whole semen from asthenozoospermic and normozoospermic samples (71% vs. 27% and 45% vs. 17%, total and progressive sperm motility, respectively), and also ejaculates from healthy donors. At least 16 phosphorus-containing metabolites involved in central energy metabolism and phospholipid, nucleotide, and nicotinamide metabolic pathways were assigned and different abundances between the samples with distinct sperm quality was detected. Specifically, higher levels of phosphocholine, glucose-1-phosphate, and to a lesser degree, acetyl phosphate were found in the asthenozoospermic seminal plasma. Notably, the phosphorometabolites implicated in lipid metabolism were highlighted in the seminal plasma, while those associated with carbohydrate metabolism were more abundant in the spermatozoa. Higher levels of phosphocholine, glucose-1-phosphate, and acetyl phosphate in the seminal plasma with poor quality suggest their crucial role in supporting sperm motility through energy metabolic pathways. In the seminal plasma, phosphorometabolites related to lipid metabolism were prominent; however, spermatozoa metabolism is more dependent on carbohydrate-related energy pathways. Understanding the presence and function of sperm phosphorylated metabolites will enhance our knowledge of the metabolic profile of healthy human sperm, improving assessment and differential diagnosis.


Assuntos
Astenozoospermia , Organofosfatos , Sêmen , Humanos , Masculino , Sêmen/metabolismo , Fosforilcolina/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Astenozoospermia/metabolismo , Fósforo/metabolismo , Análise do Sêmen
2.
Reprod Biomed Online ; 46(1): 165-178, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357302

RESUMO

RESEARCH QUESTION: Does sirtuin-1 (SIRT1) have a role in the human spermatozoa capacitation process? DESIGN: Human spermatozoa were incubated for 6 h in a capacitating medium in presence or absence of the specific SIRT1 activator, YK 3-237. Several sperm parameters were determined by flow cytometry: viability, acrosome reaction and mitochondria membrane status. Sperm motility was determined objectively by computer-assisted semen analysis. Sperm capacitation status was evaluated by the extent of protein tyrosine phosphorylation and by the percentage of spermatozoa with the acrosome reacted by a calcium ionophore challenge. RESULTS: SIRT1 was detected in the connecting piece of human spermatozoa where a lysine acetylation pattern was mainly found along the sperm tail. SIRT1 activation accelerates the occurrence of a phenotype associated with human sperm capacitation, with no differences seen in the lysine acetylation pattern. After 1 h of co-incubation of YK 3-237 with human spermatozoa, tyrosine phosphorylation levels were comparable to control levels after 6 h of incubation in capacitating conditions. In addition, the activator improved sperm responsiveness to a Ca2+ ionophore (A23187) challenge determined by an increase in acrosome-reacted spermatozoa (P = 0.025). Importantly, sperm viability and mitochondrial activity-related parameters assessed by flow cytometry were not affected by YK 3-237. CONCLUSION: YK 3-237 induces capacitation-related events in human spermatozoa such an increase of tyrosine phosphorylation levels and acrosome-reacted spermatozoa after the ionophore challenge. Together, these results show that YK 3-237 affects human spermatozoa capacitation-related events by a mechanism independent of protein lysine acetylation but dependent on bicarbonate and calcium.


Assuntos
Lisina , Sirtuína 1 , Humanos , Masculino , Lisina/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Reação Acrossômica , Capacitação Espermática/fisiologia , Fosforilação , Ionóforos/metabolismo , Ionóforos/farmacologia , Tirosina/metabolismo
3.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298548

RESUMO

Bisphenol A (BPA: 2,3-bis (4-hydroxyphenyl) propane) is an environmental chemical widely used in the manufacturing of epoxy polymers and many thermoplastic consumer products. Serious concerns about its safety led to the development of analogs, such as BPS (4-hydroxyphenyl sulfone). Very limited studies about BPS's impact on reproduction, specifically in spermatozoa, exist in comparison with BPA. Therefore, this work aims to study the in vitro impact of BPS in pig spermatozoa in comparison with BPA, focusing on sperm motility, intracellular signaling pathways and functional sperm parameters. We have used porcine spermatozoa as an optimal and validated in vitro cell model to investigate sperm toxicity. Pig spermatozoa were exposed to 1 and 100 µM BPS or BPA for 3 and 20 h. Both bisphenol S and A (100 µM) significantly reduce pig sperm motility in a time-dependent manner, although BPS exerts a lower and slower effect than BPA. Moreover, BPS (100 µM, 20 h) causes a significant increase in the mitochondrial reactive species, whereas it does not affect sperm viability, mitochondrial membrane potential, cell reactive oxygen species, GSK3α/ß phosphorylation or phosphorylation of PKA substrates. However, BPA (100 µM, 20 h) leads to a decrease in sperm viability, mitochondrial membrane potential, GSK3ß phosphorylation and PKA phosphorylation, also causing an increase in cell reactive oxygen species and mitochondrial reactive species. These intracellular effects and signaling pathways inhibited might contribute to explaining the BPA-triggered reduction in pig sperm motility. However, the intracellular pathways and mechanisms triggered by BPS are different, and the BPS-caused reduction in motility can be only partially attributed to an increase in mitochondrial oxidant species.


Assuntos
Sêmen , Motilidade dos Espermatozoides , Masculino , Animais , Suínos , Espécies Reativas de Oxigênio/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Compostos Benzidrílicos/farmacologia , Sulfonas/toxicidade
4.
FASEB J ; 35(4): e21528, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33742713

RESUMO

We have recently reported two different methodologies that improve sperm functionality. The first method involved transient exposure to the Ca2+ ionophore A23187 , and the second required sperm incubation in the absence of energy nutrients (starvation). Both methods were associated with an initial loss of motility followed by a rescue step involving ionophore removal or addition of energy metabolites, respectively. In this work, we show that starvation is accompanied by an increase in intracellular Ca2+ ([Ca2+ ]i ). Additionally, the starved cells acquire a significantly enhanced capacity to undergo a progesterone-induced acrosome reaction. Electrophysiological measurements show that CatSper channel remains active in starvation conditions. However, the increase in [Ca2+ ]i was also observed in sperm from CatSper null mice. Upon starvation, addition of energy nutrients reversed the effects on [Ca2+ ]i and decreased the effect of progesterone on the acrosome reaction to control levels. These data indicate that both methods have common molecular features.


Assuntos
Cálcio/metabolismo , Progesterona/farmacologia , Capacitação Espermática/efeitos dos fármacos , Inanição/metabolismo , Reação Acrossômica/efeitos dos fármacos , Animais , Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Feminino , Masculino , Camundongos , Progesterona/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo
5.
J Reprod Dev ; 68(1): 68-73, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-34690211

RESUMO

We aimed to analyze the influence of different cellular concentrations of boar sperm suspensions on the induction of capacitation and acrosome reaction. When spermatozoa were incubated at 100 or 200 mill/ml, significant increases in protein tyrosine phosphorylation in the p32 protein were observed, compared to those at 50 mill/ml. In addition, sperm concentration-dependent increases were observed in plasma membrane lipid disorganization (50 mill/ml vs. 200 mill/ml), induction of the acrosome reaction (50 mill/ml vs. 100 mill/ml and 200 mill/ml), and sperm viability (50 mill/ml vs. 100 mill/ml and 200 mill/ml). Our data indicate that an increase in sperm concentration stimulates the induction of capacitation and acrosome reaction in boars.


Assuntos
Reação Acrossômica , Capacitação Espermática , Acrossomo/metabolismo , Animais , Masculino , Fosforilação , Espermatozoides/metabolismo , Suspensões , Suínos
6.
J Biol Chem ; 293(43): 16830-16841, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30213858

RESUMO

Mammalian sperm must undergo capacitation as a preparation for entering into hyperactivated motility, undergoing the acrosome reaction, and acquiring fertilizing ability. One of the initial capacitation events occurs when sperm encounter an elevated HCO3- concentration. This anion activates the atypical adenylyl cyclase Adcy10, increases intracellular cAMP, and stimulates protein kinase A (PKA). Moreover, an increase in intracellular Ca2+ concentration ([Ca2+] i ) is essential for sperm capacitation. Although a cross-talk between cAMP-dependent pathways and Ca2+ clearly plays an essential role in sperm capacitation, the connection between these signaling events is incompletely understood. Here, using three different approaches, we found that CatSper, the main sperm Ca2+ channel characterized to date, is up-regulated by a cAMP-dependent activation of PKA in mouse sperm. First, HCO3- and the PKA-activating permeable compound 8-Br-cAMP induced an increase in [Ca2+] i , which was blocked by the PKA peptide inhibitor PKI, and H89, another PKA inhibitor, also abrogated the 8-Br-cAMP response. Second, HCO3- increased the membrane depolarization induced upon divalent cation removal by promoting influx of monovalent cations through CatSper channels, which was inhibited by PKI, H89, and the CatSper blocker HC-056456. Third, electrophysiological patch clamp, whole-cell recordings revealed that CatSper activity is up-regulated by HCO3- and by direct cAMP injection through the patch-clamp pipette. The activation by HCO3- and cAMP was also blocked by PKI, H89, Rp-cAMPS, and HC-056456, and electrophysiological recordings in sperm from CatSper-KO mice confirmed CatSper's role in these activation modes. Our results strongly suggest that PKA-dependent phosphorylation regulates [Ca2+] i homeostasis by activating CatSper channel complexes.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Animais , Canais de Cálcio/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Masculino , Camundongos , Fosforilação , Capacitação Espermática
7.
J Cell Physiol ; 233(12): 9685-9700, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29953592

RESUMO

Mammalian sperm must undergo a functionally defined process called capacitation to be able to fertilize oocytes. They become capacitated in vivo by interacting with the female reproductive tract or in vitro in a defined capacitation medium that contains bovine serum albumin, calcium (Ca2+ ), and bicarbonate (HCO3- ). In this work, sperm were double stained with propidium iodide and the Ca2+ dye Fluo-4 AM and analyzed by flow cytometry to determine changes in intracellular Ca2+ concentration ([Ca2+ ]i ) in individual live sperm. An increase in [Ca2+ ]i was observed in a subpopulation of capacitated live sperm when compared with noncapacitated ones. Sperm exposed to the capacitating medium displayed a rapid increase in [Ca2+ ]i within 1 min of incubation, which remained sustained for 90 min. These rise in [Ca2+ ]i after 90 min of incubation in the capacitating medium was evidenced by an increase in the normalized median fluorescence intensity. This increase was dependent on the presence of extracellular Ca2+ and, at least in part, reflected the contribution of a new subpopulation of sperm with higher [Ca2+ ]i . In addition, it was determined that the capacitation-associated [Ca2+ ]i increase was dependent of CatSper channels, as sperm derived from CatSper knockout (CatSper KO) or incubated in the presence of CatSper inhibitors failed to increase [Ca2+ ]i . Surprisingly, a minimum increase in [Ca2+ ]i was also observed in CatSper KO sperm suggesting the existence of other Ca2+ transport systems. Altogether, these results indicate that a subpopulation of sperm increases [Ca2+ ]i very rapidly during capacitation mainly due to a CatSper-mediated influx of extracellular Ca2+ .


Assuntos
Canais de Cálcio/genética , Cálcio/farmacologia , Capacitação Espermática/genética , Espermatozoides/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Citometria de Fluxo , Técnicas de Inativação de Genes , Genitália Feminina/metabolismo , Genitália Feminina/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/crescimento & desenvolvimento
8.
Reprod Fertil Dev ; 30(11): 1462-1471, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29843893

RESUMO

Herein we describe a new protocol to induce boar sperm hypermotility: temperature-induced hypermotility (TIH). Briefly, spermatozoa stored at 17°C in a calcium-free Tyrode's basal medium (containing EGTA) were exposed to increased temperature by incubation at 38.5°C. Hypermotility induced by the calcium ionophore A23187 was used as a control (calcium ionophore-induced hyperactivity (CIIH)). The increase in temperature led to an increase in the percentage of hypermotile spermatozoa. When the slope of the temperature increase is near zero, sperm hyperactivity becomes a more progressive movement. Motility parameters of sperm hyperactivation induced by TIH were different from those following CIIH. Cluster analysis revealed that these two populations of hyperactivated spermatozoa are different. TIH is independent of extracellular Ca2+ but dependent on intracellular Ca2+ release. Moreover, TIH is unaffected by protein kinase A (PKA) inhibition, whereas CIIH is reduced by half in the presence of a PKA inhibitor. In conclusion, we have demonstrated that: (1) a temperature increase in boar spermatozoa is a stimulus that can induce a hyperactive population, which is differs from the hyperactive sperm population induced by calcium ionophore; (2) the temperature increase in spermatozoa triggers the release of Ca2+ from intracellular stores; (3) extracellular calcium is not required for TIH; and (4) TIH in boar spermatozoa is independent of PKA activity.


Assuntos
Cálcio/metabolismo , Transdução de Sinais/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Temperatura , Animais , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Masculino , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Suínos
9.
Int J Mol Sci ; 19(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360525

RESUMO

AMP-activated protein kinase AMPK regulates cellular energy by controlling metabolism through the inhibition of anabolic pathways and the simultaneous stimulation of catabolic pathways. Given its central regulator role in cell metabolism, AMPK activity and its regulation have been the focus of relevant investigations, although only a few studies have focused on the AMPK function in the control of spermatozoa's ability to fertilize. This review summarizes the known cellular roles of AMPK that have been identified in mammalian spermatozoa. The involvement of AMPK activity is described in terms of the main physiological functions of mature spermatozoa, particularly in the regulation of suitable sperm motility adapted to the fluctuating extracellular medium, maintenance of the integrity of sperm membranes, and the mitochondrial membrane potential. In addition, the intracellular signaling pathways leading to AMPK activation in mammalian spermatozoa are reviewed. We also discuss the role of AMPK in assisted reproduction techniques, particularly during semen cryopreservation and preservation (at 17 °C). Finally, we reinforce the idea of AMPK as a key signaling kinase in spermatozoa that acts as an essential linker/bridge between metabolism energy and sperm's ability to fertilize.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Animais , Humanos , Masculino , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Sêmen/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Motilidade dos Espermatozoides/genética , Motilidade dos Espermatozoides/fisiologia
10.
Reproduction ; 154(3): 307-318, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28751536

RESUMO

The efficiency of intracytoplasmic sperm injection (ICSI) in the bovine is low compared to other species. It is unknown whether defective oocyte activation and/or sperm head decondensation limit the success of this technique in this species. To elucidate where the main obstacle lies, we used homologous and heterologous ICSI and parthenogenetic activation procedures. We also evaluated whether in vitro maturation negatively impacted the early stages of activation after ICSI. Here we showed that injected bovine sperm are resistant to nuclear decondensation by bovine oocytes and this is only partly overcome by exogenous activation. Remarkably, when we used heterologous ICSI, in vivo-matured mouse eggs were capable of mounting calcium oscillations and displaying normal PN formation following injection of bovine sperm, although in vitro-matured mouse oocytes were unable to do so. Together, our data demonstrate that bovine sperm are especially resistant to nuclear decondensation by in vitro-matured oocytes and this deficiency cannot be simply overcome by exogenous activation protocols, even by inducing physiological calcium oscillations. Therefore, the inability of a suboptimal ooplasmic environment to induce sperm head decondensation limits the success of ICSI in the bovine. Studies aimed to improve the cytoplasmic milieu of in vitro-matured oocytes and to replicate the molecular changes associated with in vivo capacitation and acrosome reaction will deepen our understanding of the mechanism of fertilization and improve the success of ICSI in this species.


Assuntos
Doenças dos Bovinos/terapia , Núcleo Celular/patologia , Montagem e Desmontagem da Cromatina , Infertilidade Masculina/veterinária , Cabeça do Espermatozoide/patologia , Injeções de Esperma Intracitoplásmicas/veterinária , Interações Espermatozoide-Óvulo , Animais , Sinalização do Cálcio , Bovinos , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/patologia , Núcleo Celular/metabolismo , Células Cultivadas , Técnicas de Cultura Embrionária/veterinária , Feminino , Técnicas de Maturação in Vitro de Oócitos/veterinária , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Infertilidade Masculina/terapia , Masculino , Camundongos , Partenogênese , Especificidade da Espécie , Capacitação Espermática , Cabeça do Espermatozoide/metabolismo
11.
Biochim Biophys Acta ; 1828(9): 2143-51, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23747367

RESUMO

Spermatozoa undergo energy- and metabolism-dependent processes to successfully fertilize the oocyte. AMP-activated protein kinase, AMPK, is a sensor of cell energy. We recently showed that AMPK controls spermatozoa motility. Our aims are i) to investigate the intracellular localization of AMPK in boar spermatozoa by immunofluorescence, ii) to study whether AMPK plays a role in other relevant processes of spermatozoa: mitochondrial membrane potential (∆Ψm), plasma membrane lipid disorganization, outward phosphatidylserine (PS) exposure, acrosome integrity and induced-acrosome reaction by flow cytometry and iii) to investigate intracellular AMPK pathways by western blot. Spermatozoa were incubated under different conditions in the presence or absence of compound C (CC, 30µM), an AMPK inhibitor and/or cAMP analog 8Br-cAMP. AMPKα protein is expressed at the entire acrosome and at the midpiece of spermatozoa flagellum, whereas phospho-Thr(172)-AMPK is specifically localized at the apical part of acrosome and at flagellum midpiece. CC treatment rapidly confers head-to-head aggregation-promoting property to spermatozoa. Long term AMPK inhibition in spermatozoa incubated in TCM significantly reduces high ∆Ψm. Moreover, AMPK inhibition significantly induces plasma membrane lipid disorganization and simultaneously reduces outward PS translocation at plasma membrane in a time-dependent manner. Acrosomal integrity in TCM is significantly enhanced when AMPK is inhibited. However, neither acrosome reaction nor membrane lipid disorganization induced by ionophore A23187 are affected by CC. AMPK phosphorylation is potently stimulated upon PKA activation in spermatozoa. This work suggests that AMPK, lying downstream of PKA, regulates at different levels mammalian spermatozoa membrane function.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Acrossomo/enzimologia , AMP Cíclico/metabolismo , Mitocôndrias/enzimologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Acrossomo/efeitos dos fármacos , Acrossomo/ultraestrutura , Reação Acrossômica/efeitos dos fármacos , Animais , Calcimicina/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Membrana Celular/ultraestrutura , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Fosforilação , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Suínos
12.
Biol Reprod ; 90(2): 29, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24389872

RESUMO

Spermatozoa successfully fertilize oocytes depending on cell energy-sensitive processes. We recently showed that the cell energy sensor, the AMP-activated protein kinase (AMPK), plays a relevant role in spermatozoa by regulating motility as well as plasma membrane organization and acrosomal integrity, and contributes to the maintenance of mitochondrial membrane potential. As the signaling pathways that control AMPK activity have been studied exclusively in somatic cells, our aim is to investigate the intracellular pathways that regulate AMPK phosphorylation at Thr(172) (activity) in male germ cells. Boar spermatozoa were incubated under different conditions in the presence or absence of Ca(2+), 8Br-cAMP, IBMX, PMA, the AMPK activator A769662, or inhibitors of PKA, PKC, or CaMKKalpha/beta. AMPK phosphorylation was evaluated by Western blot using anti-phospho-Thr(172)-AMPK antibody. Data show that AMPK phosphorylation in spermatozoa is potently stimulated by an elevation of cAMP levels through the activation of PKA, as the PKA inhibitor H89 blocks phospho-Thr(172)-AMPK. Another mechanism to potently activate AMPK is Ca(2+) that acts through two pathways, PKA (blocked by H89) and CaMKKalpha/beta (blocked by STO-609). Moreover, phospho-Thr(172)-AMPK levels greatly increased upon PKC activation induced by PMA, and the PKC inhibitor Ro-32-0432 inhibits TCM-induced AMPK activation. Different stimuli considered as cell stresses (rotenone, cyanide, sorbitol, and complete absence of intracellular Ca(2+) by BAPTA-AM) also cause AMPK phosphorylation in spermatozoa. In summary, AMPK activity in boar spermatozoa is regulated upstream by different kinases, such as PKA, CaMKKalpha/beta, and PKC, as well as by the essential intracellular messengers for spermatozoan function, Ca(2+) and cAMP levels.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Sinalização do Cálcio , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Espermatozoides/metabolismo , Animais , Cálcio/metabolismo , Cálcio/farmacologia , Sinalização do Cálcio/fisiologia , Ativação Enzimática , Masculino , Fosforilação , Transdução de Sinais/fisiologia , Espermatozoides/enzimologia , Sus scrofa/metabolismo
13.
Vet Res Commun ; 48(2): 1189-1193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37889425

RESUMO

We aimed to investigate the impact of processing boar spermatozoa with phosphate-buffered saline (PBS) at 4 ˚C on acrosomal integrity and increase in 32 kDa tyrosine-phosphorylated protein (p32). Following cooled PBS washing, we observed a significant increase in p32 levels and in the proportion of dead spermatozoa with compromised acrosomal integrity compared to sperm washing using PBS at room temperature. Interestingly, this increase in p32 was effectively inhibited when cooled PBS was supplemented with 1 mM AEBSF, a serine protease inhibitor. Our findings suggest that the increase of p32 in response to cooled PBS washing in boar spermatozoa is associated with enhanced protease activity in dead spermatozoa.


Assuntos
Fosfatos , Espermatozoides , Animais , Masculino , Fosfatos/metabolismo , Fosfatos/farmacologia , Sêmen , Espermatozoides/fisiologia , Suínos , Tirosina/metabolismo
14.
Theriogenology ; 223: 108-114, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703550

RESUMO

Protein glycosylation is a post-translational modification involved in wide range of biological processes. In mammalian spermatozoa this modification has been identified in numerous proteins, and membrane glycoproteins are involved in the fertilization process. The objective of the present study was to identify changes in protein glycosylation after acrosome reaction (AR) induction using the 4-Br-A23187 ionophore. Our results showed that treatment with 10 µM of 4-Br-A23187 for 20 min significantly increased the percentage of live acrosome-reacted spermatozoa compared to the control (69.8 ± 0.8 vs. 6.4 ± 0.5; mean % ± SEM, respectively). Also, we observed an increase in 32 kDa tyrosine-phosphorylated protein (p32) and a decrease in serine/threonine phosphorylation of the protein kinase A substrates (phospho-PKA-substrates) after ionophore treatment. Furthermore, changes in glycosylated proteins following AR induction were analyzed using different HRP-conjugated lectins (GNA, DSA, and SNA), revealing changes in mannose and sialic acid residues. Proteomic analysis of isolated proteins using GNA lectin revealed that 50 proteins exhibited significantly different abundance (q-value < 0.01). Subsequent analysis using Uniprot database identified 39 downregulated and 11 upregulated proteins in the presence of 4-Br-A23187. Notably, six of these proteins were classified as transmembrane proteins, namely LRRC37A/B like protein 1 C-terminal domain-containing protein, Membrane metalloendopeptidase like 1, VWFA domain-containing protein, Syndecan, Membrane spanning 4-domains A14 and Serine protease 54. This study shows a novel protocol to induce acrosome reaction in boar spermatozoa and identifies new transmembrane proteins containing mannose residues. Further work is needed to elucidate the role of these proteins in sperm-oocyte fusion.


Assuntos
Reação Acrossômica , Calcimicina , Espermatozoides , Animais , Masculino , Reação Acrossômica/efeitos dos fármacos , Suínos , Espermatozoides/metabolismo , Espermatozoides/efeitos dos fármacos , Calcimicina/farmacologia , Glicoproteínas/metabolismo , Glicosilação , Proteoma , Ionóforos de Cálcio/farmacologia
15.
Vet Res Commun ; 48(2): 773-786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37906355

RESUMO

Before fertilization of the oocyte, the spermatozoa must undergo through a series of biochemical changes in the female reproductive tract named sperm capacitation. Spermatozoa regulates its functions by post-translational modifications, being historically the most studied protein phosphorylation. In addition to phosphorylation, recently, protein acetylation has been described as an important molecular mechanism with regulatory roles in several reproductive processes. However, its role on the mammal's sperm capacitation process remains unraveled. Sirtuins are a deacetylase protein family with 7 members that regulate protein acetylation. Here, we investigated the possible role of SIRT1 on pig sperm capacitation-related events by using YK 3-237, a commercial SIRT1 activator drug. SIRT1 is localized in the midpiece of pig spermatozoa. Protein tyrosine phosphorylation (focused at p32) is an event associated to pig sperm capacitation that increases when spermatozoa are in vitro capacitated in presence of YK 3-237. Eventually, YK 3-237 induces acrosome reaction in capacitated spermatozoa: YK 3-237 treatment tripled (3.40 ± 0.40 fold increase) the percentage of acrosome-reacted spermatozoa compared to the control. In addition, YK 3-237 induces sperm intracellular pH alkalinization and raises the intracellular calcium levels through a CatSper independent mechanism. YK 3-237 was not able to bypass sAC inhibition by LRE1. In summary, YK 3-237 promotes pig sperm capacitation by a mechanism upstream of sAC activation and independent of CatSper calcium channel.


Assuntos
Sirtuína 1 , Capacitação Espermática , Suínos , Masculino , Feminino , Animais , Capacitação Espermática/fisiologia , Sirtuína 1/metabolismo , Sêmen , Espermatozoides/fisiologia , Reação Acrossômica/fisiologia , Mamíferos
16.
Front Cell Dev Biol ; 11: 1234221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655160

RESUMO

Mammalian sperm must undergo capacitation to become fertilization-competent. While working on mice, we recently developed a new methodology for treating sperm in vitro, which results in higher rates of fertilization and embryo development after in vitro fertilization. Sperm incubated in media devoid of nutrients lose motility, although they remain viable. Upon re-adding energy substrates, sperm resume motility and become capacitated with improved functionality. Here, we explore how sperm energy restriction and recovery (SER) treatment affects sperm metabolism and capacitation-associated signaling. Using extracellular flux analysis and metabolite profiling and tracing via nuclear magnetic resonance (NMR) and mass spectrometry (MS), we found that the levels of many metabolites were altered during the starvation phase of SER. Of particular interest, two metabolites, AMP and L-carnitine, were significantly increased in energy-restricted sperm. Upon re-addition of glucose and initiation of capacitation, most metabolite levels recovered and closely mimic the levels observed in capacitating sperm that have not undergone starvation. In both control and SER-treated sperm, incubation under capacitating conditions upregulated glycolysis and oxidative phosphorylation. However, ATP levels were diminished, presumably reflecting the increased energy consumption during capacitation. Flux data following the fate of 13C glucose indicate that, similar to other cells with high glucose consumption rates, pyruvate is converted into 13C-lactate and, with lower efficiency, into 13C-acetate, which are then released into the incubation media. Furthermore, our metabolic flux data show that exogenously supplied glucose is converted into citrate, providing evidence that in sperm cells, as in somatic cells, glycolytic products can be converted into Krebs cycle metabolites.

17.
Reproduction ; 144(1): 67-75, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22573827

RESUMO

During the capacitation process, spermatozoa acquire the ability to fertilize an oocyte, and upregulation of cAMP-dependent protein tyrosine phosphorylation occurs. Recently, Src family tyrosine kinase (SFK) has been involved in spermatozoa capacitation as a key PKA-dependent tyrosine kinase in several species. This work investigates the expression and role of SFK in porcine spermatozoa. SFK members Lyn and Yes are identified in porcine spermatozoa by western blotting as well as two proteins named SFK1 and SFK2 were also detected by their tyrosine 416 phosphorylation, a key residue for SFK activation. Spermatozoa with SFK1 and SFK2 increase their Y416 phosphorylation time-dependently under capacitating conditions compared with noncapacitating conditions. The specific SFK inhibitor SU6656 unaffected porcine spermatozoa motility or viability. Moreover, SFK inhibition in spermatozoa under capacitating conditions leads to a twofold increase in both nonstimulated and calcium-induced acrosome reaction. Our data show that capacitating conditions lead to a time-dependent increase in actin polymerization in boar spermatozoa and that long-term incubation with SFK inhibitor causes a reduction in the F-actin content. In summary, this work shows that the SFK members Lyn and Yes are expressed in porcine spermatozoa and that SFK1 and SFK2 are phosphorylated (activated) during capacitation. Our results point out the important role exerted by SFK in the acrosome reaction, likely mediated in part by its involvement in the actin polymerization process that accompanies capacitation, and rule out its involvement in porcine spermatozoa motility.


Assuntos
Reação Acrossômica/fisiologia , Motilidade dos Espermatozoides/fisiologia , Suínos , Quinases da Família src/fisiologia , Reação Acrossômica/efeitos dos fármacos , Actinas/análise , Animais , Cálcio/farmacologia , Ativação Enzimática , Indóis/farmacologia , Masculino , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-yes/análise , Capacitação Espermática/fisiologia , Espermatozoides/enzimologia , Sulfonamidas/farmacologia , Quinases da Família src/análise , Quinases da Família src/antagonistas & inibidores
18.
Theriogenology ; 172: 55-66, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34102463

RESUMO

The use of worldwide glyphosate-based herbicide Roundup® is growing and to date its effects on mammalian spermatozoa are controversial. This study aims to investigate the functional impact of in vitro exposure of pig spermatozoa to low concentrations of Roundup® Ultra Plus (RUP), similar to those present as environment contaminants, to its active ingredient glyphosate, and to the non-active component, surfactant polyoxyethyleneamine (POEA). Pig spermatozoa were incubated in Tyrode's basal medium (TBM) or Tyrode's complete medium (TCM) (1 h at 38.5 °C) with several RUP dilutions or equivalent concentrations of glyphosate or POEA. RUP treatment causes a significant dilution-dependent decrease in sperm motility, a significant increase in plasma membrane disorganization and reduction in GSK3ß phosphorylation (TBM) and in two PKA substrates (TBM and TCM), whereas does not affect sperm viability or mitochondrial membrane potential (MMP). Equivalent glyphosate concentrations do not affect any functional sperm parameters. However, POEA concentrations equivalent to RUP dilutions mimic all RUP sperm effects: decrease sperm motility in a concentration-dependent manner, increase sperm plasma membrane lipid disorder and significantly inhibit GSK3ß phosphorylation (TBM) and two PKA substrates without affecting sperm viability or MMP. In summary, low concentrations RUP herbicide cause sperm motility impairment without affecting sperm viability. This adverse effect could be likely due to a detrimental effect in the plasma membrane lipid organization and to inhibition of phosphorylation of both, GSK3ß and specific PKA substrates. Importantly, our results indicate that negative effects of low RUP concentrations in pig spermatozoa function are likely caused by the surfactant included in its formulation and no by its active ingredient glyphosate.


Assuntos
Herbicidas , Animais , Herbicidas/toxicidade , Masculino , Fosforilação , Motilidade dos Espermatozoides , Espermatozoides , Tensoativos , Suínos
19.
J Proteomics ; 215: 103654, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-31972345

RESUMO

Human sperm motility is essential for fertilization and among pathologies underlying male infertility is asthenozoospermia. Nevertheless, mechanisms regulating sperm motility are not completely unraveled. This work investigates phosphoproteins underlying human sperm motility by using differential phosphoproteomic in two human sperm subpopulations: high (HM) and low (LM) motility, obtained by centrifugation in a density gradient. Phosphoproteomics (HPLC-MS/MS triple TOF), comparing human LM and HM phosphoproteomes, identified 210 phosphopeptides with different abundance that correspond with 119 sperm proteins. Analysis showed that 40% of phosphoproteins in LM spermatozoa are involved in metabolism, (catabolism, protein transport, lipid biosynthesis), 25% in spermatogenesis and sperm function, 8% in immune system and 6% in DNA repair. In HM spermatozoa, 48% of phosphoproteins are related to spermatogenesis and sperm function (motility), whereas 8% are associated to metabolism. GSK3α resulted one of the most abundant phosphoproteins in HM spermatozoa. Western blot confirmed that GSK3α phosphorylation is higher in HM spermatozoa. Summarizing, this study i) identified phosphoproteins in two human spermatozoa populations, ii) supports that human spermatozoa rely in protein phosphorylation, such as GSK3 α, to regulate sperm motility, iv) raises the challenge of using some identified human sperm phosphorylated proteins (GSK3α) as targets to develop into clinically relevant biomarkers. SIGNIFICANCE: Human sperm phosphoproteome analyzed by nano HPLC-MS/MS triple TOF identifies the differential abundance of sperm phosphoproteins in two human sperm populations exhibiting high motility (HM) and/or low motility (LM) that were isolated from normozoospermic healthy donors. Majority of human phosphoproteins found in LM spermatozoa are involved in sperm metabolism (40%), whereas those in HM spermatozoa are associated to spermatogenesis and sperm function, as motility (48%), and only 8% are associated to metabolism. One of the most abundant phosphoproteins found in HM spermatozoa is GSK3α, kinase directly involved in the regulation of sperm motility that was also validated by western blot. The biological relevance of this study is based in the fact that supports that mature human sperm cells rely in protein phosphorylation to efficiently regulate sperm motility and allows identifying those regulatory human sperm phosphoproteins. This work will clearly impacts the human reproductive field as it raises the challenge of consider identified human sperm phosphoproteins, such as GSK3α, as potential biological targets to develop into relevant biomarkers for the human clinic or assisted reproductive technology.


Assuntos
Quinase 3 da Glicogênio Sintase , Motilidade dos Espermatozoides , Humanos , Masculino , Fosfoproteínas , Espermatozoides , Espectrometria de Massas em Tandem
20.
Anim Reprod Sci ; 219: 106513, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32828399

RESUMO

Boar sperm quality is less during the summer as a result of the different photoperiod or ambient temperatures as compared with the winter. The present study was conducted to elucidate possible variations in proteomic profiles of boar spermatozoa collected during the summer and winter. Effects of season on sperm viability, total motility, progressive motility, acrosome status, mitochondrial membrane potential and plasma membrane lipid organization were also analyzed. Only sperm viability and mitochondrial membrane potential were less during the summer (P <  0.05). Spermatozoa were processed and evaluated using the nano LC-MS/MS QTof procedures. A total of 1028 characterized proteins were identified in sperm collected during both seasons of the year (False Discovery Rate < 0.01) and, among the total, 85 proteins differed in sperm collected in the winter and summer, with there being a lesser abundance of these proteins when there were ejaculate collections during the summer (q-value ≤ 0.05). The results from enrichment assessments for these protein networks utilizing UniProtKB procedures for determining reproductive processes indicates there were 23 proteins that were less abundant in the summer than winter. These proteins have essential functions in spermatogenesis, sperm motility, acrosome reaction and fertilization. These results are the first where there was ascertaining of proteomic differences in boar spermatozoa collected in the summer and winter. These results might help to explain the decreased sperm quality and prolificity when semen of boars is used for artificial insemination that is collected during the season of the year when ambient temperatures are relatively greater.


Assuntos
Proteoma/metabolismo , Estações do Ano , Espermatozoides/metabolismo , Suínos/metabolismo , Animais , Sobrevivência Celular/fisiologia , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico/fisiologia , Masculino , Proteoma/análise , Proteômica , Análise do Sêmen/métodos , Análise do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA