RESUMO
SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.
Assuntos
Anticorpos Neutralizantes/imunologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Antivirais/imunologia , Líquido da Lavagem Broncoalveolar/química , COVID-19/patologia , COVID-19/virologia , Citocinas/metabolismo , Feminino , Haplorrinos , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos , RNA Guia de Cinetoplastídeos/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Carga Viral , Replicação ViralRESUMO
Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle (RBD-NP) vaccine protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NPs in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested, although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic.
RESUMO
Novel COVID-19 therapeutics are urgently needed. We generated a phage-displayed human antibody VH domain library from which we identified a high-affinity VH binder ab8. Bivalent VH, VH-Fc ab8, bound with high avidity to membrane-associated S glycoprotein and to mutants found in patients. It potently neutralized mouse-adapted SARS-CoV-2 in wild-type mice at a dose as low as 2 mg/kg and exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection, possibly enhanced by its relatively small size. Electron microscopy combined with scanning mutagenesis identified ab8 interactions with all three S protomers and showed how ab8 neutralized the virus by directly interfering with ACE2 binding. VH-Fc ab8 did not aggregate and did not bind to 5,300 human membrane-associated proteins. The potent neutralization activity of VH-Fc ab8 combined with good developability properties and cross-reactivity to SARS-CoV-2 mutants provide a strong rationale for its evaluation as a COVID-19 therapeutic.
Assuntos
Infecções por Coronavirus/tratamento farmacológico , Cadeias Pesadas de Imunoglobulinas/administração & dosagem , Região Variável de Imunoglobulina/administração & dosagem , Biblioteca de Peptídeos , Pneumonia Viral/tratamento farmacológico , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/ultraestrutura , Afinidade de Anticorpos , COVID-19 , Cricetinae , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/ultraestrutura , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Pandemias , Peptidil Dipeptidase A/metabolismo , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Tratamento Farmacológico da COVID-19RESUMO
The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.
Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Sistema Respiratório/virologia , Genética Reversa/métodos , Idoso , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Fibrose Cística/patologia , DNA Recombinante , Feminino , Furina/metabolismo , Humanos , Imunização Passiva , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Mucosa Nasal/virologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Sistema Respiratório/patologia , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Células Vero , Virulência , Replicação Viral , Soroterapia para COVID-19RESUMO
The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Humanos , Glicoproteína da Espícula de CoronavírusRESUMO
The placental transfer of maternal IgG is critical for infant protection against infectious pathogens. However, factors that modulate the placental transfer of IgG remain largely undefined. HIV-infected women have impaired placental IgG transfer, presenting a unique "disruption model" to define factors that modulate placental IgG transfer. We measured the placental transfer efficiency of maternal HIV and pathogen-specific IgG in US and Malawian HIV-infected mothers and their HIV-exposed uninfected and infected infants. We examined the role of maternal HIV disease progression, infant factors, placental Fc receptor expression, IgG subclass, and glycan signatures and their association with placental IgG transfer efficiency. Maternal IgG characteristics, such as binding to placentally expressed Fc receptors FcγRIIa and FcγRIIIa, and Fc region glycan profiles were associated with placental IgG transfer efficiency. Our findings suggest that Fc region characteristics modulate the selective placental transfer of IgG, with implications for maternal vaccine design and infant health.
Assuntos
Infecções por HIV/transmissão , HIV/genética , Imunoglobulina G/sangue , Transmissão Vertical de Doenças Infecciosas , Placenta/metabolismo , Complicações Infecciosas na Gravidez/virologia , Receptores de IgG/metabolismo , Estudos de Coortes , Progressão da Doença , Feminino , Glicosilação , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Lactente , Recém-Nascido , Malaui , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Estados Unidos , Carga Viral/genéticaRESUMO
Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
RNA polymerase II (RNAPII) transcription involves initiation from a promoter, transcriptional elongation through the gene, and termination in the terminator region. In bacteria, terminators often contain specific DNA elements provoking polymerase dissociation, but RNAPII transcription termination is thought to be driven entirely by protein co-factors. We used biochemical reconstitution, single-molecule studies, and genome-wide analysis in yeast to study RNAPII termination. Transcription into natural terminators by pure RNAPII results in spontaneous termination at specific sequences containing T-tracts. Single-molecule analysis indicates that termination involves pausing without backtracking. The "torpedo" Rat1-Rai1 exonuclease (XRN2 in humans) greatly stimulates spontaneous termination but is ineffectual on other paused RNAPIIs. By contrast, elongation factor Spt4-Spt5 (DSIF) suppresses termination. Genome-wide analysis further indicates that termination occurs by transcript cleavage at the poly(A) site exposing a new 5' RNA-end that allows Rat1-Rai1 loading, which then catches up with destabilized RNAPII at specific termination sites to end transcription.
Assuntos
RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Humanos , RNA Polimerase II/genética , DNA , Transcrição Gênica , Exonucleases , Fatores de Alongamento de Peptídeos , Saccharomyces cerevisiae/genética , Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae/genéticaAssuntos
Vacina BNT162 , COVID-19 , Vacinas contra COVID-19 , Humanos , Imunidade Humoral , RNA Mensageiro , Linfócitos T , VacinaçãoRESUMO
The CVnCoV (CureVac) mRNA vaccine for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was recently evaluated in a phase 2b/3 efficacy trial in humans1. CV2CoV is a second-generation mRNA vaccine containing non-modified nucleosides but with optimized non-coding regions and enhanced antigen expression. Here we report the results of a head-to-head comparison of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in non-human primates. We immunized 18 cynomolgus macaques with two doses of 12 µg lipid nanoparticle-formulated CVnCoV or CV2CoV or with sham (n = 6 per group). Compared with CVnCoV, CV2CoV induced substantially higher titres of binding and neutralizing antibodies, memory B cell responses and T cell responses as well as more potent neutralizing antibody responses against SARS-CoV-2 variants, including the Delta variant. Moreover, CV2CoV was found to be comparably immunogenic to the BNT162b2 (Pfizer) vaccine in macaques. Although CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded more robust protection with markedly lower viral loads in the upper and lower respiratory tracts. Binding and neutralizing antibody titres were correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of a non-modified mRNA SARS-CoV-2 vaccine in non-human primates.
Assuntos
Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Nucleosídeos/química , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de mRNA/genética , Vacinas de mRNA/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/normas , Feminino , Macaca fascicularis/imunologia , Masculino , Células B de Memória/imunologia , Nucleosídeos/genética , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacinas Sintéticas/normas , Carga Viral , Vacinas de mRNA/normasRESUMO
Vividly imagining a song or a melody is a skill that many people accomplish with relatively little effort. However, we are only beginning to understand how the brain represents, holds, and manipulates these musical "thoughts." Here, we decoded perceived and imagined melodies from magnetoencephalography (MEG) brain data (N = 71) to characterize their neural representation. We found that, during perception, auditory regions represent the sensory properties of individual sounds. In contrast, a widespread network including fronto-parietal cortex, hippocampus, basal nuclei, and sensorimotor regions hold the melody as an abstract unit during both perception and imagination. Furthermore, the mental manipulation of a melody systematically changes its neural representation, reflecting volitional control of auditory images. Our work sheds light on the nature and dynamics of auditory representations, informing future research on neural decoding of auditory imagination.
RESUMO
The Ad26.COV2.S vaccine1-3 has demonstrated clinical efficacy against symptomatic COVID-19, including against the B.1.351 variant that is partially resistant to neutralizing antibodies1. However, the immunogenicity of this vaccine in humans against SARS-CoV-2 variants of concern remains unclear. Here we report humoral and cellular immune responses from 20 Ad26.COV2.S vaccinated individuals from the COV1001 phase I-IIa clinical trial2 against the original SARS-CoV-2 strain WA1/2020 as well as against the B.1.1.7, CAL.20C, P.1 and B.1.351 variants of concern. Ad26.COV2.S induced median pseudovirus neutralizing antibody titres that were 5.0-fold and 3.3-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020 on day 71 after vaccination. Median binding antibody titres were 2.9-fold and 2.7-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020. Antibody-dependent cellular phagocytosis, complement deposition and natural killer cell activation responses were largely preserved against the B.1.351 variant. CD8 and CD4 T cell responses, including central and effector memory responses, were comparable among the WA1/2020, B.1.1.7, B.1.351, P.1 and CAL.20C variants. These data show that neutralizing antibody responses induced by Ad26.COV2.S were reduced against the B.1.351 and P.1 variants, but functional non-neutralizing antibody responses and T cell responses were largely preserved against SARS-CoV-2 variants. These findings have implications for vaccine protection against SARS-CoV-2 variants of concern.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Ad26COVS1 , Adolescente , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Humanos , Imunidade Celular , Imunidade Humoral , Pessoa de Meia-Idade , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto JovemRESUMO
The emergence of SARS-CoV-2 variants that partially evade neutralizing antibodies poses a threat to the efficacy of current COVID-19 vaccines1,2. The Ad26.COV2.S vaccine expresses a stabilized spike protein from the WA1/2020 strain of SARS-CoV-2, and has recently demonstrated protective efficacy against symptomatic COVID-19 in humans in several geographical regions-including in South Africa, where 95% of sequenced viruses in cases of COVID-19 were the B.1.351 variant3. Here we show that Ad26.COV2.S elicits humoral and cellular immune responses that cross-react with the B.1.351 variant and protects against B.1.351 challenge in rhesus macaques. Ad26.COV2.S induced lower binding and neutralizing antibodies against B.1.351 as compared to WA1/2020, but elicited comparable CD8 and CD4 T cell responses against the WA1/2020, B.1.351, B.1.1.7, P.1 and CAL.20C variants. B.1.351 infection of control rhesus macaques resulted in higher levels of virus replication in bronchoalveolar lavage and nasal swabs than did WA1/2020 infection. Ad26.COV2.S provided robust protection against both WA1/2020 and B.1.351, although we observed higher levels of virus in vaccinated macaques after B.1.351 challenge. These data demonstrate that Ad26.COV2.S provided robust protection against B.1.351 challenge in rhesus macaques. Our findings have important implications for vaccine control of SARS-CoV-2 variants of concern.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Imunidade Celular , Imunidade Humoral , Macaca mulatta/imunologia , SARS-CoV-2/imunologia , Ad26COVS1 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Líquido da Lavagem Broncoalveolar/virologia , COVID-19/imunologia , COVID-19/patologia , Feminino , Macaca mulatta/virologia , Masculino , Nariz/virologia , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Linfócitos T/imunologia , Replicação ViralRESUMO
Betacoronaviruses caused the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome, as well as the current pandemic of SARS coronavirus 2 (SARS-CoV-2)1-4. Vaccines that elicit protective immunity against SARS-CoV-2 and betacoronaviruses that circulate in animals have the potential to prevent future pandemics. Here we show that the immunization of macaques with nanoparticles conjugated with the receptor-binding domain of SARS-CoV-2, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV and SARS-CoV-2 (including the B.1.1.7, P.1 and B.1.351 variants). Vaccination of macaques with these nanoparticles resulted in a 50% inhibitory reciprocal serum dilution (ID50) neutralization titre of 47,216 (geometric mean) for SARS-CoV-2, as well as in protection against SARS-CoV-2 in the upper and lower respiratory tracts. Nucleoside-modified mRNAs that encode a stabilized transmembrane spike or monomeric receptor-binding domain also induced cross-neutralizing antibody responses against SARS-CoV and bat coronaviruses, albeit at lower titres than achieved with the nanoparticles. These results demonstrate that current mRNA-based vaccines may provide some protection from future outbreaks of zoonotic betacoronaviruses, and provide a multimeric protein platform for the further development of vaccines against multiple (or all) betacoronaviruses.
Assuntos
Anticorpos Neutralizantes/imunologia , Betacoronavirus/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Resfriado Comum/prevenção & controle , Reações Cruzadas/imunologia , Pandemias , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Administração Intranasal , Animais , COVID-19/epidemiologia , Vacinas contra COVID-19/imunologia , Resfriado Comum/imunologia , Resfriado Comum/virologia , Modelos Animais de Doenças , Feminino , Humanos , Macaca/imunologia , Masculino , Modelos Moleculares , Nanopartículas/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Traqueia , VacinaçãoRESUMO
Coronaviruses are prone to transmission to new host species, as recently demonstrated by the spread to humans of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic1. Small animal models that recapitulate SARS-CoV-2 disease are needed urgently for rapid evaluation of medical countermeasures2,3. SARS-CoV-2 cannot infect wild-type laboratory mice owing to inefficient interactions between the viral spike protein and the mouse orthologue of the human receptor, angiotensin-converting enzyme 2 (ACE2)4. Here we used reverse genetics5 to remodel the interaction between SARS-CoV-2 spike protein and mouse ACE2 and designed mouse-adapted SARS-CoV-2 (SARS-CoV-2 MA), a recombinant virus that can use mouse ACE2 for entry into cells. SARS-CoV-2 MA was able to replicate in the upper and lower airways of both young adult and aged BALB/c mice. SARS-CoV-2 MA caused more severe disease in aged mice, and exhibited more clinically relevant phenotypes than those seen in Hfh4-ACE2 transgenic mice, which express human ACE2 under the control of the Hfh4 (also known as Foxj1) promoter. We demonstrate the utility of this model using vaccine-challenge studies in immune-competent mice with native expression of mouse ACE2. Finally, we show that the clinical candidate interferon-λ1a (IFN-λ1a) potently inhibits SARS-CoV-2 replication in primary human airway epithelial cells in vitro-both prophylactic and therapeutic administration of IFN-λ1a diminished SARS-CoV-2 replication in mice. In summary, the mouse-adapted SARS-CoV-2 MA model demonstrates age-related disease pathogenesis and supports the clinical use of pegylated IFN-λ1a as a treatment for human COVID-196.
Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Interferons/farmacologia , Interferons/uso terapêutico , Interleucinas/farmacologia , Interleucinas/uso terapêutico , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Envelhecimento/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Interferon-alfa/administração & dosagem , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Interferons/administração & dosagem , Interleucinas/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Modelos Moleculares , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2RESUMO
A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic1-8. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes9,10. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials.
Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Macaca mulatta , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , COVID-19 , Vacinas contra COVID-19 , Modelos Animais de Doenças , Feminino , Imunidade Celular , Imunidade Humoral , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , SARS-CoV-2 , Vacinação , Carga ViralRESUMO
A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy.
Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes/imunologia , Betacoronavirus/genética , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Vacinas contra COVID-19 , Ensaios Clínicos Fase III como Assunto , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Feminino , Pulmão/imunologia , Pulmão/virologia , Camundongos , Mutação , Nariz/imunologia , Nariz/virologia , Pneumonia Viral/virologia , RNA Mensageiro/genética , RNA Viral/genética , SARS-CoV-2 , Células Th1/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Vacinas Virais/química , Vacinas Virais/genéticaRESUMO
The ongoing pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health1 and the medical countermeasures available so far are limited2,3. Moreover, we currently lack a thorough understanding of the mechanisms of humoral immunity to SARS-CoV-24. Here we analyse a large panel of human monoclonal antibodies that target the spike (S) glycoprotein5, and identify several that exhibit potent neutralizing activity and fully block the receptor-binding domain of the S protein (SRBD) from interacting with human angiotensin-converting enzyme 2 (ACE2). Using competition-binding, structural and functional studies, we show that the monoclonal antibodies can be clustered into classes that recognize distinct epitopes on the SRBD, as well as distinct conformational states of the S trimer. Two potently neutralizing monoclonal antibodies, COV2-2196 and COV2-2130, which recognize non-overlapping sites, bound simultaneously to the S protein and neutralized wild-type SARS-CoV-2 virus in a synergistic manner. In two mouse models of SARS-CoV-2 infection, passive transfer of COV2-2196, COV2-2130 or a combination of both of these antibodies protected mice from weight loss and reduced the viral burden and levels of inflammation in the lungs. In addition, passive transfer of either of two of the most potent ACE2-blocking monoclonal antibodies (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on the SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic agents.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Betacoronavirus/química , Ligação Competitiva , COVID-19 , Linhagem Celular , Reações Cruzadas , Modelos Animais de Doenças , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos , Pessoa de Meia-Idade , Testes de Neutralização , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Profilaxia Pré-Exposição , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
SARS-CoV-2 spike harbors glycans which function as ligands for lectins. Therefore, it should be possible to exploit lectins to target SARS-CoV-2 and inhibit cellular entry by binding glycans on the spike protein. Burkholderia oklahomensis agglutinin (BOA) is an antiviral lectin that interacts with viral glycoproteins via N-linked high mannose glycans. Here, we show that BOA binds to the spike protein and is a potent inhibitor of SARS-CoV-2 viral entry at nanomolar concentrations. Using a variety of biophysical approaches, we demonstrate that the interaction is avidity driven and that BOA cross-links the spike protein into soluble aggregates. Furthermore, using virus neutralization assays, we demonstrate that BOA effectively inhibits all tested variants of concern as well as SARS-CoV 2003, establishing that multivalent glycan-targeting molecules have the potential to act as pan-coronavirus inhibitors.
Assuntos
COVID-19 , Humanos , RNA Viral , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Aglutininas , Lectinas , Polissacarídeos/farmacologiaRESUMO
A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.