Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Child Dev ; 92(4): 1325-1336, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33484166

RESUMO

Children need to learn to persist through challenges, yet adults sometimes step in to solve problems for them. Here, we looked at how adult taking over related to children's persistence. In an observational study (N = 34, ages 4-8), we found that parents who took over more often during a challenging puzzle task rated their children as dispositionally less persistent. To establish whether taking over can cause reduced persistence, we ran two preregistered experiments (N = 150, ages 4-5). Children assigned to a taking over condition persisted less on a subsequent task compared to those in a teaching or a baseline condition. Reframing the context did not ameliorate the negative impact of taking over. The results suggest that taking over impairs children's persistence.


Assuntos
Comportamento Infantil , Pais , Adulto , Atenção , Criança , Pré-Escolar , Humanos , Aprendizagem
2.
J Chem Ecol ; 46(7): 557-566, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32601892

RESUMO

Portable electroantennograms (pEAG) can further our understanding of odor plume dynamics and complement laboratory-based electroantennogram tools. pEAG's can help to address important questions such as the influence of plume structure on insect behavior, the active space of semiochemical-baited traps, and the impact of biotic and abiotic factors on this active space. Challenges associated with pEAGs include their miniaturization and sensitivity, confounding environmental odors, and processing of data. Here, we describe a pEAG built with modern engineering hardware and techniques that is portable in being both light in weight (516 g) and smaller (12 × 12 × 8 cm, volume 1152 cm3) than earlier models. It is able to incorporate insects of a range of sizes (4 to 30 mm antennal length), has wireless communication (communication range of 600 m urban, 10 km line of sight), a stand-alone power supply, and uses both antennae of the test insect. We report normalized antennal responses from Epiphyas postvittana in a dose response experiment where our pEAG compared favorably with traditional laboratory EAG equipment for this species. Dose-response comparisons between E. postvittana, Agrotis ipsilon, and Lymantria dispar dispar showed mean detection limits from a pheromone source dose of 100, 100, and 1 ng, respectively, for our pEAG. This pEAG should allow future real-time analysis of EAG responses in the field in research on how insects interact with odor plumes and the factors that influence the active space of semiochemical-baited traps.


Assuntos
Antenas de Artrópodes/fisiologia , Fenômenos Eletrofisiológicos , Eletrofisiologia/instrumentação , Mariposas/fisiologia , Animais , Masculino , Especificidade da Espécie
3.
Sensors (Basel) ; 19(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540524

RESUMO

Metal oxide (MOX) sensors are widely used for chemical sensing due to their low cost, miniaturization, low power consumption and durability. Yet, getting instantaneous measurements of fluctuating gas concentration in turbulent plumes is not possible due to their slow response time. In this paper, we show that the slow response of MOX sensors can be compensated by deconvolution, provided that an invertible, parametrized, sensor model is available. We consider a nonlinear, first-order dynamic model that is mathematically tractable for MOX identification and deconvolution. By transforming the sensor signal in the log-domain, the system becomes linear in the parameters and these can be estimated by the least-squares techniques. Moreover, we use the MOX diversity in a sensor array to avoid training with a supervised signal. The information provided by two (or more) sensors, exposed to the same flow but responding with different dynamics, is exploited to recover the ground truth signal (gas input). This approach is known as blind deconvolution. We demonstrate its efficiency on MOX sensors recorded in turbulent plumes. The reconstructed signal is similar to the one obtained with a fast photo-ionization detector (PID). The technique is thus relevant to track a fast-changing gas concentration with MOX sensors, resulting in a compensated response time comparable to that of a PID.

4.
PLoS Pathog ; 9(3): e1003229, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555246

RESUMO

Detrimental inflammation of the lungs is a hallmark of severe influenza virus infections. Endothelial cells are the source of cytokine amplification, although mechanisms underlying this process are unknown. Here, using combined pharmacological and gene-deletion approaches, we show that plasminogen controls lung inflammation and pathogenesis of infections with influenza A/PR/8/34, highly pathogenic H5N1 and 2009 pandemic H1N1 viruses. Reduction of virus replication was not responsible for the observed effect. However, pharmacological depletion of fibrinogen, the main target of plasminogen reversed disease resistance of plasminogen-deficient mice or mice treated with an inhibitor of plasminogen-mediated fibrinolysis. Therefore, plasminogen contributes to the deleterious inflammation of the lungs and local fibrin clot formation may be implicated in host defense against influenza virus infections. Our studies suggest that the hemostatic system might be explored for novel treatments against influenza.


Assuntos
Antivirais/farmacologia , Fibrinolíticos/farmacologia , Inflamação/induzido quimicamente , Infecções por Orthomyxoviridae/tratamento farmacológico , Plasminogênio/farmacologia , Pneumonia Viral/tratamento farmacológico , Animais , Feminino , Fibrina/efeitos dos fármacos , Tempo de Lise do Coágulo de Fibrina , Fibrinogênio/efeitos dos fármacos , Fibrinólise/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Inflamação/prevenção & controle , Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/patogenicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/prevenção & controle , Plasminogênio/deficiência , Plasminogênio/genética , Pneumonia Viral/prevenção & controle , Replicação Viral/efeitos dos fármacos
5.
PLoS Comput Biol ; 10(10): e1003861, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25330317

RESUMO

Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.


Assuntos
Algoritmos , Comportamento Apetitivo , Inteligência Artificial , Modelos Biológicos , Odorantes/análise , Robótica , Animais , Biologia Computacional , Feminino , Voo Animal , Masculino , Mariposas , Feromônios
6.
PLoS Comput Biol ; 10(12): e1003975, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474026

RESUMO

In the olfactory system of male moths, a specialized subset of neurons detects and processes the main component of the sex pheromone emitted by females. It is composed of several thousand first-order olfactory receptor neurons (ORNs), all expressing the same pheromone receptor, that contact synaptically a few tens of second-order projection neurons (PNs) within a single restricted brain area. The functional simplicity of this system makes it a favorable model for studying the factors that contribute to its exquisite sensitivity and speed. Sensory information--primarily the identity and intensity of the stimulus--is encoded as the firing rate of the action potentials, and possibly as the latency of the neuron response. We found that over all their dynamic range, PNs respond with a shorter latency and a higher firing rate than most ORNs. Modelling showed that the increased sensitivity of PNs can be explained by the ORN-to-PN convergent architecture alone, whereas their faster response also requires cell-to-cell heterogeneity of the ORN population. So, far from being detrimental to signal detection, the ORN heterogeneity is exploited by PNs, and results in two different schemes of population coding based either on the response of a few extreme neurons (latency) or on the average response of many (firing rate). Moreover, ORN-to-PN transformations are linear for latency and nonlinear for firing rate, suggesting that latency could be involved in concentration-invariant coding of the pheromone blend and that sensitivity at low concentrations is achieved at the expense of precise encoding at high concentrations.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais , Biologia Computacional , Masculino , Mariposas/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Feromônios/metabolismo
7.
Vet Res ; 46: 117, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26412247

RESUMO

Tick-borne pathogens cause potent infections. These pathogens benefit from molecules contained in tick saliva that have evolved to modulate host innate and adaptive immune responses. This is called "saliva-activated transmission" and enables tick-borne pathogens to evade host immune responses. Ticks feed on their host for relatively long periods; thus, mechanisms counteracting the inflammation-driven recruitment and activation of innate effector cells at the bite site, are an effective strategy to escape the immune response. Here, we developed an original in vitro model to evaluate and to characterize the immunomodulatory effects of tick saliva that prevent the establishment of a local inflammatory immune response. This model mimics the tick bite and enables the assessment of the effect of saliva on the inflammatory-associated dynamic recruitment of cells from the mononuclear phagocyte system. Using this model, we were able to recapitulate the dual effect of tick saliva on the mobilization of inflammatory monocyte-derived cells, i.e. (i) impaired recruitment of monocytes from the blood to the bite wound; and (ii) poor mobilization of monocyte-derived cells from the skin to the draining lymph node. This simple tool reconstitutes the effect of tick saliva in vivo, which we characterized in the mouse, and should enable the identification of important factors facilitating pathogen infection. Furthermore, this model may be applied to the characterization of any pathogen-derived immunosuppressive molecule affecting the establishment of the inflammatory immune response.


Assuntos
Imunidade Adaptativa , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Ixodidae/imunologia , Sistema Fagocitário Mononuclear/parasitologia , Animais , Feminino , Tolerância Imunológica , Ixodidae/química , Camundongos , Camundongos Endogâmicos C57BL , Saliva/química , Saliva/imunologia
8.
Proc Natl Acad Sci U S A ; 108(49): 19790-5, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22109556

RESUMO

Sensory systems, both in the living and in machines, have to be optimized with respect to their environmental conditions. The pheromone subsystem of the olfactory system of moths is a particularly well-defined example in which rapid variations of odor content in turbulent plumes require fast, concentration-invariant neural representations. It is not clear how cellular and network mechanisms in the moth antennal lobe contribute to coding efficiency. Using computational modeling, we show that intrinsic potassium currents (I(A) and I(SK)) in projection neurons may combine with extrinsic inhibition from local interneurons to implement a dual latency code for both pheromone identity and intensity. The mean latency reflects stimulus intensity, whereas latency differences carry concentration-invariant information about stimulus identity. In accordance with physiological results, the projection neurons exhibit a multiphasic response of inhibition-excitation-inhibition. Together with synaptic inhibition, intrinsic currents I(A) and I(SK) account for the first and second inhibitory phases and contribute to a rapid encoding of pheromone information. The first inhibition plays the role of a reset to limit variability in the time to first spike. The second inhibition prevents responses of excessive duration to allow tracking of intermittent stimuli.


Assuntos
Interneurônios/fisiologia , Manduca/fisiologia , Rede Nervosa/fisiologia , Feromônios/fisiologia , Algoritmos , Animais , Feminino , Interneurônios/citologia , Masculino , Manduca/citologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Rede Nervosa/citologia , Odorantes , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Canais de Potássio/fisiologia , Atrativos Sexuais/fisiologia
9.
Sci Rep ; 13(1): 6138, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061548

RESUMO

We study how falling hoverflies use sensory cues to trigger appropriate roll righting behavior. Before being released in a free fall, flies were placed upside-down with their legs contacting the substrate. The prior leg proprioceptive information about their initial orientation sufficed for the flies to right themselves properly. However, flies also use visual and antennal cues to recover faster and disambiguate sensory conflicts. Surprisingly, in one of the experimental conditions tested, hoverflies flew upside-down while still actively flapping their wings. In all the other conditions, flies were able to right themselves using two roll dynamics: fast ([Formula: see text]50ms) and slow ([Formula: see text]110ms) in the presence of consistent and conflicting cues, respectively. These findings suggest that a nonlinear sensory integration of the three types of sensory cues occurred. A ring attractor model was developed and discussed to account for this cue integration process.


Assuntos
Dípteros , Propriocepção , Animais , Reflexo de Endireitamento , Sinais (Psicologia)
10.
PLoS One ; 18(2): e0266234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800354

RESUMO

Ehrlichia ruminantium is a tick-borne intracellular pathogen of ruminants that causes heartwater, a disease present in Sub-saharan Africa, islands in the Indian Ocean and the Caribbean, inducing significant economic losses. At present, three avirulent strains of E. ruminantium (Gardel, Welgevonden and Senegal isolates) have been produced by a process of serial passaging in mammalian cells in vitro, but unfortunately their use as vaccines do not offer a large range of protection against other strains, possibly due to the genetic diversity present within the species. So far no genetic basis for virulence attenuation has been identified in any E. ruminantium strain that could offer targets to facilitate vaccine production. Virulence attenuated Senegal strains have been produced twice independently, and require many fewer passages to attenuate than the other strains. We compared the genomes of a virulent and attenuated Senegal strain and identified a likely attenuator gene, ntrX, a global transcription regulator and member of a two-component system that is linked to environmental sensing. This gene has an inverted partial duplicate close to the parental gene that shows evidence of gene conversion in different E. ruminantium strains. The pseudogenisation of the gene in the avirulent Senegal strain occurred by gene conversion from the duplicate to the parent, transferring a 4 bp deletion which is unique to the Senegal strain partial duplicate amongst the wild isolates. We confirmed that the ntrX gene is not expressed in the avirulent Senegal strain by RT-PCR. The inverted duplicate structure combined with the 4 bp deletion in the Senegal strain can explain both the attenuation and the faster speed of attenuation in the Senegal strain relative to other strains of E. ruminantium. Our results identify nrtX as a promising target for the generation of attenuated strains of E. ruminantium by random or directed mutagenesis that could be used for vaccine production.


Assuntos
Ehrlichia ruminantium , Animais , Ehrlichia ruminantium/genética , Conversão Gênica , Senegal , Virulência/genética , Duplicações Segmentares Genômicas , Ruminantes/genética
11.
Child Abuse Negl ; 130(Pt 1): 105376, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34728100

RESUMO

BACKGROUND: Although there is evidence that family violence increased in the United States during the COVID-19 pandemic, few studies have characterized longitudinal trends in family violence across the course of initial stay-at-home orders. OBJECTIVE: The purpose of the present study is to investigate patterns and predictors of family violence, such as child maltreatment and harsh punishment, during the first eight weeks of the pandemic after initial stay-at-home orders in North Carolina. PARTICIPANTS AND SETTING: Participants included 120 families with children ages 4-11 (53% non-White, 49% female) and a primary caregiver (98% female) living in rural and suburban areas in North Carolina. Participants were recruited based on high risk of pre-pandemic family violence exposure. METHODS: Caregivers completed weekly surveys during the pandemic assessing family violence, caregiver employment status, and caregiver emotion reactivity. In addition, all caregivers completed pre-pandemic surveys on family violence. RESULTS: Mixed-effects models revealed that family violence was highest following initial stay-at-home orders and decreased linearly over time. Higher pre-pandemic child violence exposure and caregiver unemployment were associated with higher initial family violence. Higher caregiver emotion reactivity was associated with changes in family violence across time. CONCLUSIONS: We observed high levels of family violence following stay-at-home orders, especially in families with higher baseline violence, higher caregiver emotion reactivity, and caregiver unemployment or underemployment. These associations suggest that vulnerable families may respond to the additional stressor of stay-at-home orders with increased violence and thus need additional support in moments of crisis.


Assuntos
COVID-19 , Maus-Tratos Infantis , COVID-19/epidemiologia , Cuidadores/psicologia , Criança , Maus-Tratos Infantis/psicologia , Pré-Escolar , Feminino , Humanos , Masculino , North Carolina/epidemiologia , Pandemias
12.
Neural Comput ; 23(5): 1187-204, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21299420

RESUMO

In traditional event-driven strategies, spike timings are analytically given or calculated with arbitrary precision (up to machine precision). Exact computation is possible only for simplified neuron models, mainly the leaky integrate-and-fire model. In a recent paper, Zheng, Tonnelier, and Martinez (2009) introduced an approximate event-driven strategy, named voltage stepping, that allows the generic simulation of nonlinear spiking neurons. Promising results were achieved in the simulation of single quadratic integrate-and-fire neurons. Here, we assess the performance of voltage stepping in network simulations by considering more complex neurons (quadratic integrate-and-fire neurons with adaptation) coupled with multiple synapses. To handle the discrete nature of synaptic interactions, we recast voltage stepping in a general framework, the discrete event system specification. The efficiency of the method is assessed through simulations and comparisons with a modified time-stepping scheme of the Runge-Kutta type. We demonstrated numerically that the original order of voltage stepping is preserved when simulating connected spiking neurons, independent of the network activity and connectivity.


Assuntos
Potenciais de Ação/fisiologia , Simulação por Computador/normas , Redes Neurais de Computação , Neurônios/fisiologia , Dinâmica não Linear , Sinapses/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Humanos , Modelos Teóricos , Distribuição Aleatória
13.
Sci Robot ; 5(43)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33022614

RESUMO

Flying insects have evolved to develop efficient strategies to navigate in natural environments. Yet, studying them experimentally is difficult because of their small size and high speed of motion. Consequently, previous studies were limited to tethered flights, hovering flights, or restricted flights within confined laboratory chambers. Here, we report the development of a cable-driven parallel robot, named lab-on-cables, for tracking and interacting with a free-flying insect. In this approach, cameras are mounted on cables, so as to move automatically with the insect. We designed a reactive controller that minimizes the online tracking error between the position of the flying insect, provided by an embedded stereo-vision system, and the position of the moving lab, computed from the cable lengths. We validated the lab-on-cables with Agrotis ipsilon moths (ca. 2 centimeters long) flying freely up to 3 meters per second. We further demonstrated, using prerecorded trajectories, the possibility to track other insects such as fruit flies or mosquitoes. The lab-on-cables is relevant to free-flight studies and may be used in combination with stimulus delivery to assess sensory modulation of flight behavior (e.g., pheromone-controlled anemotaxis in moths).


Assuntos
Voo Animal/fisiologia , Insetos/fisiologia , Robótica/instrumentação , Animais , Fenômenos Biomecânicos , Desenho de Equipamento , Imageamento Tridimensional , Modelos Biológicos , Mariposas/fisiologia , Feromônios/fisiologia , Robótica/estatística & dados numéricos , Realidade Virtual
14.
Front Neuroinform ; 14: 522000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154719

RESUMO

Accurate simulations of brain structures is a major problem in neuroscience. Many works are dedicated to design better models or to develop more efficient simulation schemes. In this paper, we propose a hybrid simulation scheme that combines time-stepping second-order integration of Hodgkin-Huxley (HH) type neurons with event-driven updating of the synaptic currents. As the HH model is a continuous model, there is no explicit spike events. Thus, in order to preserve the accuracy of the integration method, a spike detection algorithm is developed that accurately determines spike times. This approach allows us to regenerate the outgoing connections at each event, thereby avoiding the storage of the connectivity. Consequently, memory consumption is significantly reduced while preserving execution time and accuracy of the simulations, especially the spike times of detailed point neuron models. The efficiency of the method, implemented in the SiReNe software, is demonstrated by the simulation of a striatum model which consists of more than 106 neurons and 108 synapses (each neuron has a fan-out of 504 post-synaptic neurons), under normal and Parkinson's conditions.

15.
BMC Mol Biol ; 10: 111, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20034374

RESUMO

BACKGROUND: Whole genome transcriptomic analysis is a powerful approach to elucidate the molecular mechanisms controlling the pathogenesis of obligate intracellular bacteria. However, the major hurdle resides in the low quantity of prokaryotic mRNAs extracted from host cells. Our model Ehrlichia ruminantium (ER), the causative agent of heartwater, is transmitted by tick Amblyomma variegatum. This bacterium affects wild and domestic ruminants and is present in Sub-Saharan Africa and the Caribbean islands. Because of its strictly intracellular location, which constitutes a limitation for its extensive study, the molecular mechanisms involved in its pathogenicity are still poorly understood. RESULTS: We successfully adapted the SCOTS method (Selective Capture of Transcribed Sequences) on the model Rickettsiales ER to capture mRNAs. Southern Blots and RT-PCR revealed an enrichment of ER's cDNAs and a diminution of ribosomal contaminants after three rounds of capture. qRT-PCR and whole-genome ER microarrays hybridizations demonstrated that SCOTS method introduced only a limited bias on gene expression. Indeed, we confirmed the differential gene expression between poorly and highly expressed genes before and after SCOTS captures. The comparative gene expression obtained from ER microarrays data, on samples before and after SCOTS at 96 hpi was significantly correlated (R2 = 0.7). Moreover, SCOTS method is crucial for microarrays analysis of ER, especially for early time points post-infection. There was low detection of transcripts for untreated samples whereas 24% and 70.7% were revealed for SCOTS samples at 24 and 96 hpi respectively. CONCLUSIONS: We conclude that this SCOTS method has a key importance for the transcriptomic analysis of ER and can be potentially used for other Rickettsiales. This study constitutes the first step for further gene expression analyses that will lead to a better understanding of both ER pathogenicity and the adaptation of obligate intracellular bacteria to their environment.


Assuntos
Ehrlichia ruminantium/química , Perfilação da Expressão Gênica/métodos , Análise de Sequência de DNA/métodos , Transcrição Gênica , Animais , Bovinos , Células Cultivadas , DNA Bacteriano/genética , DNA Complementar/genética , Ehrlichia ruminantium/genética , Cabras
16.
PLoS Comput Biol ; 4(8): e1000139, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18795147

RESUMO

It has been proposed that synchronized neural assemblies in the antennal lobe of insects encode the identity of olfactory stimuli. In response to an odor, some projection neurons exhibit synchronous firing, phase-locked to the oscillations of the field potential, whereas others do not. Experimental data indicate that neural synchronization and field oscillations are induced by fast GABA(A)-type inhibition, but it remains unclear how desynchronization occurs. We hypothesize that slow inhibition plays a key role in desynchronizing projection neurons. Because synaptic noise is believed to be the dominant factor that limits neuronal reliability, we consider a computational model of the antennal lobe in which a population of oscillatory neurons interact through unreliable GABA(A) and GABA(B) inhibitory synapses. From theoretical analysis and extensive computer simulations, we show that transmission failures at slow GABA(B) synapses make the neural response unpredictable. Depending on the balance between GABA(A) and GABA(B) inputs, particular neurons may either synchronize or desynchronize. These findings suggest a wiring scheme that triggers stimulus-specific synchronized assemblies. Inhibitory connections are set by Hebbian learning and selectively activated by stimulus patterns to form a spiking associative memory whose storage capacity is comparable to that of classical binary-coded models. We conclude that fast inhibition acts in concert with slow inhibition to reformat the glomerular input into odor-specific synchronized neural assemblies.


Assuntos
Insetos/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Condutos Olfatórios/fisiologia , Reconhecimento Fisiológico de Modelo , Animais , Associação , Retroalimentação/fisiologia , Cinética , Inibição Neural , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Transmissão Sináptica/fisiologia , Biologia de Sistemas , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
17.
Infect Genet Evol ; 8(4): 459-66, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17644446

RESUMO

Ehrlichia ruminantium is the causative agent of heartwater, a major tick-borne disease of livestock in Africa introduced in the Caribbean and threatening to emerge and spread in the American mainland. Complete genome sequencing was done for two isolates of E. ruminantium of differing phenotype, isolates Gardel (Erga) from Guadeloupe Island and Welgevonden (Erwe) originating from South Africa and maintained in Guadeloupe. The type strain of E. ruminantium (Erwo), previously isolated and sequenced in South Africa; is identical to Erwe with respect to target genes. They make the Erwe/Erwo complex. Comparative analysis of the genomes shows the presence of 49 unique CDS and 28 truncated CDS differentiating Erga from Erwe/Erwo. Three regions of accumulated differences (RAD) acting as mutational hot spots were identified in E. ruminantium. Ten CDS, six unique CDS and four truncated CDS corresponding to major genomic changes (deletions or extensive mutations) were considered as targets for differential diagnosis on four isolates of E. ruminantium: Erga, Erwe/Erwo, Senegal and Umpala. Pairs of PCR primers were developed for each target gene. PCR analysis of the target genes generated strain-specific patterns on Erga and Erwe/Erwo as predicted by comparative genomics, but also for isolates Senegal and Umpala. The target genes identified by bacterial comparative genomics are shown to be highly efficient for strain-specific PCR diagnosis of E. ruminantium and further vaccine management tools.


Assuntos
Ehrlichia ruminantium/isolamento & purificação , Hidropericárdio/diagnóstico , Hidropericárdio/microbiologia , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/microbiologia , Células Cultivadas , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Ehrlichia ruminantium/genética , Feminino , Genoma Bacteriano , Geografia , Cabras , Camundongos , Ovinos , Especificidade da Espécie
19.
Vet Parasitol ; 153(3-4): 338-46, 2008 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-18406061

RESUMO

We report Marie Galante as one of the Caribbean islands most heavily infested by the tropical bont tick (TBT) Amblyomma variegatum which is associated with two major diseases of ruminants: heartwater and dermatophilosis. In 2005, a survey was undertaken to assess the prevalence of TBT infestation in cattle, the prevalence of Ehrlichia ruminantium infection in TBTs, and the tick control measures implemented by livestock owners. A random sample of 195 cattle herds out of 1885 recorded on the island was investigated by thoroughly counting adult ticks on each animal and filling a questionnaire. A randomly collected sample of 136 TBTs was tested for infection by E. ruminantium by pCS20 nested PCR. Cattle herd prevalence (hp) was 73.8% for infestation by at least one TBT, 17.9% for infestation by at least one engorged female TBT, and 8.2% for clinical dermatophilosis. Cattle individual prevalence was 42.3% for infestation by at least one TBT, 6.6% for infestation by at least one engorged female TBT, and 2.2% for clinical dermatophilosis. The minimum, maximum and average numbers of TBTs per infested animal were, respectively 1, 108 and 11.5. Prevalence of TBT infection by E. ruminantium was 19.1%. No significant difference in herd prevalence was found among parishes or among ecological zones. For cattle owners treating against ticks (97.9% of all owners), all used aspersion of amitraz and herd prevalence was significantly different among those treating every 1-2-week (hp=69.6%, n=148), and less often than every 2-week (hp=88.6%, n=35) (P=0.031). Of the 42 herd subunits treated less than 4 days before the survey, 27 (64%) were infested with at least one TBT, and 6 (14%) with at least one engorged female TBT. These results indicate a high level of TBT infestation in Marie Galante, the inefficacy of tick treatments currently performed, and the need for an improved tick control strategy. Persisting high levels of infestation in Marie Galante threaten the success of on-going TBT eradication programs in the Caribbean because TBT can spread through migrating birds and trade of animals or of animal hides to other islands and potentially the American continent.


Assuntos
Vetores Aracnídeos/microbiologia , Doenças dos Bovinos/epidemiologia , Ixodidae/microbiologia , Dermatopatias Parasitárias/veterinária , Controle de Ácaros e Carrapatos/métodos , Infestações por Carrapato/veterinária , Criação de Animais Domésticos , Animais , Bovinos , Doenças dos Bovinos/prevenção & controle , Ehrlichia ruminantium , Feminino , Hidropericárdio/epidemiologia , Hidropericárdio/prevenção & controle , Hidropericárdio/transmissão , Masculino , Dermatopatias Parasitárias/epidemiologia , Dermatopatias Parasitárias/prevenção & controle , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/prevenção & controle , Índias Ocidentais
20.
J Neural Eng ; 15(2): 025001, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29219118

RESUMO

OBJECTIVE: Modern neuroscience research requires electrophysiological recording of local field potentials (LFPs) in moving animals. Wireless transmission has the advantage of removing the wires between the animal and the recording equipment but is hampered by the large number of data to be sent at a relatively high rate. APPROACH: To reduce transmission bandwidth, we propose an encoder/decoder scheme based on adaptive non-uniform quantization. Our algorithm uses the current transmitted codeword to adapt the quantization intervals to changing statistics in LFP signals. It is thus backward adaptive and does not require the sending of side information. The computational complexity is low and similar at the encoder and decoder sides. These features allow for real-time signal recovery and facilitate hardware implementation with low-cost commercial microcontrollers. MAIN RESULTS: As proof-of-concept, we developed an open-source neural recording device called NeRD. The NeRD prototype digitally transmits eight channels encoded at 10 kHz with 2 bits per sample. It occupies a volume of 2 × 2 × 2 cm3 and weighs 8 g with a small battery allowing for 2 h 40 min of autonomy. The power dissipation is 59.4 mW for a communication range of 8 m and transmission losses below 0.1%. The small weight and low power consumption offer the possibility of mounting the entire device on the head of a rodent without resorting to a separate head-stage and battery backpack. The NeRD prototype is validated in recording LFPs in freely moving rats at 2 bits per sample while maintaining an acceptable signal-to-noise ratio (>30 dB) over a range of noisy channels. SIGNIFICANCE: Adaptive quantization in neural implants allows for lower transmission bandwidths while retaining high signal fidelity and preserving fundamental frequencies in LFPs.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/fisiologia , Eletrodos Implantados , Neurônios/fisiologia , Telemetria/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Eletrodos Implantados/tendências , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Desenho de Equipamento/tendências , Masculino , Ratos , Ratos Sprague-Dawley , Telemetria/métodos , Telemetria/tendências , Tecnologia sem Fio/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA