Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(4): 101757, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202654

RESUMO

The aminoacyl-tRNA synthetases are an ancient and ubiquitous component of all life. Many eukaryotic synthetases balance their essential function, preparing aminoacyl-tRNA for use in mRNA translation, with diverse roles in cell signaling. Herein, we use long-read sequencing to discover a leukocyte-specific exon skipping event in human leucyl-tRNA synthetase (LARS). We show that this highly expressed splice variant, LSV3, is regulated by serine-arginine-rich splicing factor 1 (SRSF1) in a cell-type-specific manner. LSV3 has a 71 amino acid deletion in the catalytic domain and lacks any tRNA leucylation activity in vitro. However, we demonstrate that this LARS splice variant retains its role as a leucine sensor and signal transducer for the proliferation-promoting mTOR kinase. This is despite the exon deletion in LSV3 including a portion of the previously mapped Vps34-binding domain used for one of two distinct pathways from LARS to mTOR. In conclusion, alternative splicing of LARS has separated the ancient catalytic activity of this housekeeping enzyme from its more recent evolutionary role in cell signaling, providing an opportunity for functional specificity in human immune cells.


Assuntos
Processamento Alternativo , Leucina-tRNA Ligase , Humanos , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , RNA de Transferência/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
2.
J Biol Chem ; 295(14): 4563-4576, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32102848

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that play a fundamental role in protein synthesis. They catalyze the esterification of specific amino acids to the 3'-end of their cognate tRNAs and therefore play a pivotal role in protein synthesis. Although previous studies suggest that aaRS-dependent errors in protein synthesis can be beneficial to some microbial species, evidence that reduced aaRS fidelity can be adaptive is limited. Using bioinformatics analyses, we identified two distinct leucyl-tRNA synthetase (LeuRS) genes within all genomes of the archaeal family Sulfolobaceae. Remarkably, one copy, designated LeuRS-I, had key amino acid substitutions within its editing domain that would be expected to disrupt hydrolytic editing of mischarged tRNALeu and to result in variation within the proteome of these extremophiles. We found that another copy, LeuRS-F, contains canonical active sites for aminoacylation and editing. Biochemical and genetic analyses of the paralogs within Sulfolobus islandicus supported the hypothesis that LeuRS-F, but not LeuRS-I, functions as an essential tRNA synthetase that accurately charges leucine to tRNALeu for protein translation. Although LeuRS-I was not essential, its expression clearly supported optimal S. islandicus growth. We conclude that LeuRS-I may have evolved to confer a selective advantage under the extreme and fluctuating environmental conditions characteristic of the volcanic hot springs in which these archaeal extremophiles reside.


Assuntos
Proteínas Arqueais/metabolismo , Leucina-tRNA Ligase/metabolismo , Sulfolobus/enzimologia , Sequência de Aminoácidos , Aminoacilação , Proteínas Arqueais/química , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Domínio Catalítico , Extremófilos/metabolismo , Edição de Genes , Concentração de Íons de Hidrogênio , Leucina/metabolismo , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/classificação , Leucina-tRNA Ligase/genética , Mutagênese Sítio-Dirigida , Filogenia , Biossíntese de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Sulfolobus/crescimento & desenvolvimento , Temperatura
3.
Hum Genet ; 137(4): 293-303, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29691655

RESUMO

Progressive microcephaly and neurodegeneration are genetically heterogenous conditions, largely associated with genes that are essential for the survival of neurons. In this study, we interrogate the genetic etiology of two siblings from a non-consanguineous family with severe early onset of neurological manifestations. Whole exome sequencing identified novel compound heterozygous mutations in VARS that segregated with the proband: a missense (c.3192G>A; p.Met1064Ile) and a splice site mutation (c.1577-2A>G). The VARS gene encodes cytoplasmic valyl-tRNA synthetase (ValRS), an enzyme that is essential during eukaryotic translation. cDNA analysis on patient derived fibroblasts revealed that the splice site acceptor variant allele led to nonsense mediated decay, thus resulting in a null allele. Three-dimensional modeling of ValRS predicts that the missense mutation lies in a highly conserved region and could alter side chain packing, thus affecting tRNA binding or destabilizing the interface between the catalytic and tRNA binding domains. Further quantitation of the expression of VARS showed remarkably reduced levels of mRNA and protein in skin derived fibroblasts. Aminoacylation experiments on patient derived cells showed markedly reduced enzyme activity of ValRS suggesting the mutations to be loss of function. Bi-allelic mutations in cytoplasmic amino acyl tRNA synthetases are well-known for their role in neurodegenerative disorders, yet human disorders associated with VARS mutations have not yet been clinically well characterized. Our study describes the phenotype associated with recessive VARS mutations and further functional delineation of the pathogenicity of novel variants identified, which widens the clinical and genetic spectrum of patients with progressive microcephaly.


Assuntos
Atrofia/genética , Microcefalia/genética , Convulsões/genética , Valina-tRNA Ligase/genética , Alelos , Aminoacil-tRNA Sintetases/genética , Atrofia/fisiopatologia , Pré-Escolar , Regulação Enzimológica da Expressão Gênica , Humanos , Lactente , Mutação com Perda de Função/genética , Masculino , Microcefalia/fisiopatologia , Linhagem , RNA de Transferência/genética , Proteínas de Ligação a RNA/genética , Convulsões/fisiopatologia , Aminoacilação de RNA de Transferência/genética , Sequenciamento do Exoma
4.
Methods ; 113: 120-126, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27887986

RESUMO

Aminoacyl-tRNA synthetases (AARSs) comprise an enzyme family that generates and maintains pools of aminoacylated tRNAs, which serve as essential substrates for protein synthesis. Many protein synthesis factors, including tRNA and AARSs also have non-canonical functions. Particularly in mammalian cells, alternate functions of AARSs have been associated with re-distribution in the cell to sites that are removed from translation. Sub-fractionation methods for E. coli were designed and optimized to carefully investigate re-localization of bacterial AARSs and tRNA that might aid in conferring alternate activities. Cell fractionation included isolation of the cytoplasm, periplasm, membrane, outer membrane vesicles, and extracellular media. Specific endogenous proteins and RNAs were probed respectively within each fraction via Western blots using antibodies and by Northern blots with primers to unique regions of the nucleic acid.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Fracionamento Celular/métodos , Membrana Celular/enzimologia , Citoplasma/enzimologia , Periplasma/enzimologia , Biossíntese de Proteínas , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/genética , Northern Blotting/métodos , Western Blotting/métodos , Compartimento Celular , Membrana Celular/química , Citoplasma/química , Escherichia coli/enzimologia , Escherichia coli/genética , Vesículas Extracelulares/química , Vesículas Extracelulares/enzimologia , Expressão Gênica , Periplasma/química , Transporte Proteico , Sondas RNA/síntese química , Sondas RNA/química , RNA de Transferência/genética , RNA de Transferência/isolamento & purificação , RNA de Transferência/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(10): 3817-22, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431144

RESUMO

Mycoplasma leucyl-tRNA synthetases (LeuRSs) have been identified in which the connective polypeptide 1 (CP1) amino acid editing domain that clears mischarged tRNAs are missing (Mycoplasma mobile) or highly degenerate (Mycoplasma synoviae). Thus, these enzymes rely on a clearance pathway called pretransfer editing, which hydrolyzes misactivated aminoacyl-adenylate intermediate via a nebulous mechanism that has been controversial for decades. Even as the sole fidelity pathway for clearing amino acid selection errors in the pathogenic M. mobile, pretransfer editing is not robust enough to completely block mischarging of tRNA(Leu), resulting in codon ambiguity and statistical proteins. A high-resolution X-ray crystal structure shows that M. mobile LeuRS structurally overlaps with other LeuRS cores. However, when CP1 domains from different aminoacyl-tRNA synthetases and origins were fused to this common LeuRS core, surprisingly, pretransfer editing was enhanced. It is hypothesized that the CP1 domain evolved as a molecular rheostat to balance multiple functions. These include distal control of specificity and enzyme activity in the ancient canonical core, as well as providing a separate hydrolytic active site for clearing mischarged tRNA.


Assuntos
Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/metabolismo , Mycoplasma/genética , Mycoplasma/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Códon/genética , Códon/metabolismo , Cristalografia por Raios X , Leucina-tRNA Ligase/genética , Modelos Moleculares , Dados de Sequência Molecular , Mycoplasma/patogenicidade , Mycoplasma synoviae/enzimologia , Mycoplasma synoviae/genética , Conformação Proteica , Estrutura Terciária de Proteína , Edição de RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência de Leucina/genética , RNA de Transferência de Leucina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
6.
Top Curr Chem ; 344: 167-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23536244

RESUMO

Aminoacyl-tRNA synthetases (AARSs) are a group of essential and ubiquitous "house-keeping" enzymes responsible for charging corresponding amino acids to their cognate transfer RNAs (tRNAs) and providing the correct substrates for high-fidelity protein synthesis. During the last three decades, wide-ranging biochemical and genetic studies have revealed non-catalytic regulatory functions of multiple AARSs in biological processes including gene transcription, mRNA translation, and mitochondrial RNA splicing, and in diverse species from bacteria through yeasts to vertebrates. Remarkably, ongoing exploration of non-canonical functions of AARSs has shown that they contribute importantly to control of inflammation, angiogenesis, immune response, and tumorigenesis, among other critical physiopathological processes. In this chapter we consider the non-canonical functions of AARSs in regulating gene expression by mechanisms not directly related to their enzymatic activities, namely, at the levels of mRNA production, processing, and translation. The scope of AARS-mediated gene regulation ranges from negative autoregulation of single AARS genes to gene-selective control, and ultimately to global gene regulation. Clearly, AARSs have evolved these auxiliary regulatory functions that optimize the survival and well-being of the organism, possibly with more complex regulatory mechanisms associated with more complex organisms. In the first section on transcriptional control, we introduce the roles of autoregulation by Escherichia coli AlaRS, transcriptional activation by human LysRS, and transcriptional inhibition by vertebrate SerRS. In the second section on translational control, we recapitulate the roles of GluProRS in translation repression at the initiation step, auto-inhibition of E. coli thrS mRNA translation by ThrRS, and global translational arrest by phosphorylated human MetRS. Finally, in the third section, we describe the RNA splicing activities of mitochondrial TyrRS and LeuRS in Neurospora and yeasts, respectively.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Regulação da Expressão Gênica , Animais , Humanos , Biossíntese de Proteínas , Splicing de RNA , Transcrição Gênica
7.
Proc Natl Acad Sci U S A ; 108(23): 9378-83, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21606343

RESUMO

Mycoplasma parasites escape host immune responses via mechanisms that depend on remarkable phenotypic plasticity. Identification of these mechanisms is of great current interest. The aminoacyl-tRNA synthetases (AARSs) attach amino acids to their cognate tRNAs, but occasionally make errors that substitute closely similar amino acids. AARS editing pathways clear errors to avoid mistranslation during protein synthesis. We show here that AARSs in Mycoplasma parasites have point mutations and deletions in their respective editing domains. The deleterious effect on editing was confirmed with a specific example studied in vitro. In vivo mistranslation was determined by mass spectrometric analysis of proteins produced in the parasite. These mistranslations are uniform cases where the predicted closely similar amino acid replaced the correct one. Thus, natural AARS editing-domain mutations in Mycoplasma parasites cause mistranslation. We raise the possibility that these mutations evolved as a mechanism for antigen diversity to escape host defense systems.


Assuntos
Aminoacil-tRNA Sintetases/genética , Mutação , Mycoplasma/genética , Biossíntese de Proteínas/genética , Sequência de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/metabolismo , Animais , Sítios de Ligação/genética , Humanos , Cinética , Dados de Sequência Molecular , Mycoplasma/classificação , Mycoplasma/metabolismo , Infecções por Mycoplasma/microbiologia , Filogenia , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência Aminoácido-Específico/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Espectrometria de Massas em Tandem
8.
J Biol Chem ; 287(14): 11285-9, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22334703

RESUMO

Statistical proteomes that are naturally occurring can result from mechanisms involving aminoacyl-tRNA synthetases (aaRSs) with inactivated hydrolytic editing active sites. In one case, Mycoplasma mobile leucyl-tRNA synthetase (LeuRS) is uniquely missing its entire amino acid editing domain, called CP1, which is otherwise present in all known LeuRSs and also isoleucyl- and valyl-tRNA synthetases. This hydrolytic CP1 domain was fused to a synthetic core composed of a Rossmann ATP-binding fold. The fusion event splits the primary structure of the Rossmann fold into two halves. Hybrid LeuRS chimeras using M. mobile LeuRS as a scaffold were constructed to investigate the evolutionary protein:protein fusion of the CP1 editing domain to the Rossmann fold domain that is ubiquitously found in kinases and dehydrogenases, in addition to class I aaRSs. Significantly, these results determined that the modular construction of aaRSs and their adaptation to accommodate more stringent amino acid specificities included CP1-dependent distal effects on amino acid discrimination in the synthetic core. As increasingly sophisticated protein synthesis machinery evolved, the addition of the CP1 domain increased specificity in the synthetic site, as well as provided a hydrolytic editing site.


Assuntos
Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Domínio Catalítico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacilação , Escherichia coli/enzimologia , Escherichia coli/genética , Evolução Molecular , Hidrólise , Cinética , Mycoplasma/enzimologia , Mycoplasma/genética , Engenharia de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Especificidade por Substrato
9.
J Biol Chem ; 287(18): 14772-81, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22383526

RESUMO

The yeast mitochondrial leucyl-tRNA synthetase (ymLeuRS) performs dual essential roles in group I intron splicing and protein synthesis. A specific LeuRS domain called CP1 is responsible for clearing noncognate amino acids that are misactivated during aminoacylation. The ymLeuRS CP1 domain also plays a critical role in splicing. Herein, the ymLeuRS CP1 domain was isolated from the full-length enzyme and was active in RNA splicing in vitro. Unlike its Escherichia coli LeuRS CP1 domain counterpart, it failed to significantly hydrolyze misaminoacylated tRNA(Leu). In addition and in stark contrast to the yeast domain, the editing-active E. coli LeuRS CP1 domain failed to recapitulate the splicing activity of the full-length E. coli enzyme. Although LeuRS-dependent splicing activity is rooted in an ancient adaptation for its aminoacylation activity, these results suggest that the ymLeuRS has functionally diverged to confer a robust splicing activity. This adaptation could have come at some expense to the protein's housekeeping role in aminoacylation and editing.


Assuntos
Aminoacil-tRNA Sintetases/biossíntese , Proteínas Mitocondriais/biossíntese , Edição de RNA/fisiologia , Splicing de RNA/fisiologia , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/enzimologia , Aminoacil-tRNA Sintetases/genética , Proteínas Mitocondriais/genética , Estrutura Terciária de Proteína , RNA/genética , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Mitocondrial , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
J Am Chem Soc ; 135(16): 6047-55, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23276298

RESUMO

The catalytic events in members of the nucleotidylyl transferase superfamily are initiated by a millisecond binding of ATP in the active site. Through metadynamics simulations on a class I aminoacyl-tRNA synthetase (aaRSs), the largest group in the superfamily, we calculate the free energy landscape of ATP selection and binding. Mutagenesis studies and fluorescence spectroscopy validated the identification of the most populated intermediate states. The rapid first binding step involves formation of encounter complexes captured through a fly casting mechanism that acts upon the triphosphate moiety of ATP. In the slower nucleoside binding step, a conserved histidine in the HxxH motif orients the incoming ATP through base-stacking interactions resulting in a deep minimum in the free energy surface. Mutation of this histidine significantly decreases the binding affinity measured experimentally and computationally. The metadynamics simulations further reveal an intermediate quality control state that the synthetases and most likely other members of the superfamily use to select ATP over other nucleoside triphosphates.


Assuntos
Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Algoritmos , Aminoacil-tRNA Sintetases/química , Catálise , Clonagem Molecular , Simulação por Computador , Corantes Fluorescentes , Histidina/química , Histidina/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Mutagênese , Mutação/genética , Nucleosídeos/química , Espectrometria de Fluorescência , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
11.
J Am Chem Soc ; 133(46): 18510-3, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22017352

RESUMO

Many aminoacyl-tRNA synthetases prevent mistranslation by relying upon proofreading activities at multiple stages of the aminoacylation reaction. In leucyl-tRNA synthetase (LeuRS), editing activities that precede or are subsequent to tRNA charging have been identified. Although both are operational, either the pre- or post-transfer editing activity can predominate. Yeast cytoplasmic LeuRS (ycLeuRS) misactivates structurally similar noncognate amino acids including isoleucine and methionine. We show that ycLeuRS has a robust post-transfer editing activity that efficiently clears tRNA(Leu) mischarged with isoleucine. In comparison, the enzyme's post-transfer hydrolytic activity against tRNA(Leu) mischarged with methionine is weak. Rather, methionyl-adenylate is cleared robustly via an enzyme-mediated pre-transfer editing activity. We hypothesize that, similar to E. coli LeuRS, ycLeuRS has coexisting functional pre- and post-transfer editing activities. In the case of ycLeuRS, a shift between the two editing pathways is triggered by the identity of the noncognate amino acid.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases/metabolismo , RNA de Transferência de Leucina , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Escherichia coli/enzimologia , Leveduras/enzimologia
12.
Proc Natl Acad Sci U S A ; 105(49): 19223-8, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19020078

RESUMO

Mistranslation is toxic to bacterial and mammalian cells and can lead to neurodegeneration in the mouse. Mistranslation is caused by the attachment of the wrong amino acid to a specific tRNA. Many aminoacyl-tRNA synthetases have an editing activity that deacylates the mischarged amino acid before capture by the elongation factor and transport to the ribosome. For class I tRNA synthetases, the editing activity is encoded by the CP1 domain, which is distinct from the active site for aminoacylation. What is not clear is whether the enzymes also have an editing activity that is separable from CP1. A point mutation in CP1 of class I leucyl-tRNA synthetase inactivates deacylase activity and produces misacylated tRNA. In contrast, although deletion of the entire CP1 domain also disabled the deacylase activity, the deletion-bearing enzyme produced no mischarged tRNA. Further investigation showed that a second tRNA-dependent activity prevented misacylation and is intrinsic to the active site for aminoacylation.


Assuntos
Escherichia coli/enzimologia , Escherichia coli/genética , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , Biossíntese de Proteínas , Leucina-tRNA Ligase/química , Mutação Puntual , Estrutura Terciária de Proteína , Aminoacil-RNA de Transferência/metabolismo , Aminoacilação de RNA de Transferência
13.
J Biol Chem ; 284(39): 26243-50, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19622748

RESUMO

Leucyl-tRNA synthetase (LeuRS) is an essential RNA splicing factor for yeast mitochondrial introns. Intracellular experiments have suggested that it works in collaboration with a maturase that is encoded within the bI4 intron. RNA deletion mutants of the large bI4 intron were constructed to identify a competently folded intron for biochemical analysis. The minimized bI4 intron was active in RNA splicing and contrasts with previous proposals that the canonical core of the bI4 intron is deficient for catalysis. The activity of the minimized bI4 intron was enhanced in vitro by the presence of the bI4 maturase or LeuRS.


Assuntos
Endorribonucleases/genética , Íntrons/genética , Leucina-tRNA Ligase/metabolismo , Nucleotidiltransferases/genética , Splicing de RNA/genética , Sequência de Bases , Sítios de Ligação/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , Eletroforese em Gel de Poliacrilamida , Endorribonucleases/metabolismo , Guanosina/farmacologia , Cinética , Leucina-tRNA Ligase/genética , Magnésio/farmacologia , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Nucleotidiltransferases/metabolismo , Ligação Proteica , Splicing de RNA/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Técnicas do Sistema de Duplo-Híbrido
14.
Biochemistry ; 48(38): 8958-64, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19702327

RESUMO

Leucyl-tRNA synthetase (LeuRS) has been identified as a target for a novel class of boron-containing small molecules that bind to its editing active site. When the 3' end of tRNA(Leu) binds to the editing active site, the boron cross-links to the cis-diols of its terminal ribose. The cross-linked RNA-protein complex blocks the overall aminoacylation activity of the enzyme. Similar to those of other LeuRSs, the human cytoplasmic enzyme (hscLeuRS) editing active site resides in a discrete domain called the connective polypeptide 1 domain (CP1), where mischarged tRNA binds for hydrolysis of the noncognate amino acid. The editing site of hscLeuRS includes a highly conserved threonine discriminator and universally conserved aspartic acid that were mutationally characterized. Substitution of the threonine residue to alanine uncoupled specificity as in other LeuRSs. However, the introduction of bulky residues into the amino acid binding pocket failed to block deacylation of tRNA, indicating that the architecture of the amino acid binding pocket is different compared to that of other characterized LeuRSs. In addition, mutation of the universally conserved aspartic acid abolished tRNA(Leu) deacylation. Surprisingly though, this editing-defective hscLeuRS maintained fidelity. It is possible that an alternate editing mechanism may have been activated upon failure of the post-transfer editing active site.


Assuntos
Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/metabolismo , Edição de RNA , RNA de Transferência de Leucina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Domínio Catalítico/genética , Bovinos , Sequência Conservada , Primers do DNA/genética , Humanos , Técnicas In Vitro , Leucina-tRNA Ligase/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
J Clin Invest ; 129(5): 2088-2093, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985292

RESUMO

Aside from its catalytic function in protein synthesis, leucyl-tRNA synthetase (LRS) has a nontranslational function in regulating cell growth via the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) pathway by sensing amino acid availability. mTOR also regulates skeletal myogenesis, but the signaling mechanism is distinct from that in cell growth regulation. A role of LRS in myogenesis has not been reported. Here we report that LRS negatively regulated myoblast differentiation in vitro. This function of LRS was independent of its regulation of protein synthesis, and it required leucine-binding but not tRNA charging activity of LRS. Local knock down of LRS accelerated muscle regeneration in a mouse injury model, and so did the knock down of Rag or Raptor. Further in vitro studies established a Rag-mTORC1 pathway, which inhibits the IRS1-PI3K-Akt pathway, to be the mediator of the nontranslational function of LRS in myogenesis. BC-LI-0186, an inhibitor reported to disrupt LRS-Rag interaction, promoted robust muscle regeneration with enhanced functional recovery, and this effect was abolished by cotreatment with an Akt inhibitor. Taken together, our findings revealed what we believe is a novel function for LRS in controlling the homeostasis of myogenesis, and suggested a potential therapeutic strategy to target a noncanonical function of a housekeeping protein.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leucina-tRNA Ligase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/fisiologia , Biossíntese de Proteínas , Regeneração , Animais , Catálise , Domínio Catalítico , Diferenciação Celular , Feminino , Homeostase , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Desenvolvimento Muscular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA de Transferência/metabolismo , Resultado do Tratamento
16.
J Mol Biol ; 367(2): 384-94, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17270210

RESUMO

Aminoacylation and editing by leucyl-tRNA synthetases (LeuRS) require migration of the tRNA acceptor stem end between the canonical aminoacylation core and a separate domain called CP1 that is responsible for amino acid editing. The LeuRS CP1 domain can also support group I intron RNA splicing in the yeast mitochondria, although splicing-sensitive sites have been identified on the main body. The RDW peptide, a highly conserved peptide within an RDW-containing motif, resides near one of the beta-strand linkers that connects the main body to the CP1 domain. We hypothesized that the RDW peptide was important for interactions of one or more of the LeuRS-RNA complexes. An assortment of X-ray crystallography structures suggests that the RDW peptide is dynamic and forms unique sets of interactions with the aminoacylation and editing complexes. Mutational analysis identified specific sites within the RDW peptide that failed to support protein synthesis activity in complementation experiments. In vitro enzymatic investigations of mutations at Trp445, Arg449, and Arg451 in yeast mitochondrial LeuRS suggested that these sites within the RDW peptide are critical to the aminoacylation complex, but impacted amino acid editing activity to a much less extent. We propose that these highly conserved sites primarily influence productive tRNA interactions in the aminoacylation complex.


Assuntos
Leucina-tRNA Ligase/química , Proteínas Mitocondriais/química , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Processamento Alternativo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Teste de Complementação Genética , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Dados de Sequência Molecular , Mutação , Peptídeos/química , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Aminoacilação de RNA de Transferência
17.
Chem Biol ; 14(12): 1307-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18096496

RESUMO

Aminoacyl-tRNA synthetase mutations have been linked to neurological diseases, but aminoacylation may be unaffected. This protein superfamily also performs many other diverse functions. Yang et al. insightfully engineer a single mutation to unmask a cell signaling activity of tyrosyl-tRNA synthetase.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Citocinas/metabolismo , Mutação , Doenças do Sistema Nervoso/genética , Motivos de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Animais , Movimento Celular , Proliferação de Células , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Evolução Molecular , Humanos , Modelos Biológicos , Conformação Proteica , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo
18.
J Bacteriol ; 189(23): 8765-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17890314

RESUMO

Leucyl-tRNA synthetase (LeuRS) has evolved an editing function to clear misactivated amino acids. An Escherichia coli-based assay was established to identify amino acids that compromise the fidelity of LeuRS and translation. Multiple nonstandard as well as standard amino acids were toxic to the cell when LeuRS editing was inactivated.


Assuntos
Aminoácidos/metabolismo , Aminoácidos/toxicidade , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Leucina-tRNA Ligase/metabolismo , Aminoácidos/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Regulação Bacteriana da Expressão Gênica
19.
J Mol Biol ; 362(4): 771-86, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16949614

RESUMO

Mitochondrial tRNAs (mtRNAs) often lack domains and posttranscriptional modifications that are found in cytoplasmic tRNAs. These structural and chemical elements normally stabilize the folding of cytoplasmic tRNAs into canonical structures that are competent for aminoacylation and translation. For example, the dihydrouridine (D) stem and loop domain is involved in the tertiary structure of cytoplasmic tRNAs through hydrogen bonds and a Mg2+ bridge to the ribothymidine (T) stem and loop domain. These interactions are often absent in mtRNA because the D-domain is truncated or missing. Using gel mobility shift analyses, UV, circular dichroism and NMR spectroscopies and aminoacylation assays, we have investigated the functional folding interactions of chemically synthesized and site-specifically modified mitochondrial and cytoplasmic tRNAs. We found that Mg2+ is critical for folding of the truncated D-domain of bovine mtRNAMet with the tRNA's T-domain. Contrary to the expectation that Mg2+ stabilizes RNA folding, the mtRNAMet D-domain structure was unfolded and relaxed, rather than stabilized in the presence of Mg2+. Because the D-domain is transcribed prior to the T-domain, we conclude that Mg2+ prevents misfolding of the 5'-half of bovine mtRNAMet facilitating its correct interaction with the T-domain. The interaction of the mtRNAMet D-domain with the T-domain was enhanced by a pseudouridine located in either the D or T-domains compared to that of the unmodified RNAs (Kd=25.3, 24.6 and 44.4 microM, respectively). Mg2+ also affected the folding interaction of a yeast mtRNALeu1, but had minimal effect on the folding of an Escherichia coli cytoplasmic tRNALeu. The D-domain modification, dihydrouridine, facilitated mtRNALeu folding. These data indicate that conserved modifications assist and stabilize the formation of the functional mtRNA tertiary structure.


Assuntos
Escherichia coli/química , Magnésio/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA de Transferência/química , RNA/química , Leveduras/química , Aminoacilação , Animais , Sequência de Bases , Bovinos , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Magnésio/metabolismo , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , RNA/genética , Estabilidade de RNA/efeitos dos fármacos , RNA Mitocondrial , RNA de Transferência/genética , Temperatura
20.
Nat Commun ; 8(1): 732, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963468

RESUMO

Leucyl-tRNA synthetase (LRS) is known to function as leucine sensor in the mammalian target of rapamycin complex 1 (mTORC1) pathway. However, the pathophysiological significance of its activity is not well understood. Here, we demonstrate that the leucine sensor function for mTORC1 activation of LRS can be decoupled from its catalytic activity. We identified compounds that inhibit the leucine-dependent mTORC1 pathway by specifically inhibiting the GTPase activating function of LRS, while not affecting the catalytic activity. For further analysis, we selected one compound, BC-LI-0186, which binds to the RagD interacting site of LRS, thereby inhibiting lysosomal localization of LRS and mTORC1 activity. It also effectively suppressed the activity of cancer-associated MTOR mutants and the growth of rapamycin-resistant cancer cells. These findings suggest new strategies for controlling tumor growth that avoid the resistance to existing mTOR inhibitors resulting from cancer-associated MTOR mutations.Leucyl-tRNA synthetase (LRS) is a leucine sensor of the mTORC1 pathway. Here, the authors identify inhibitors of the GTPase activating function of LRS, not affecting its catalytic activity, and demonstrate that the leucine sensor function of LRS can be a new target for mTORC1 inhibition.


Assuntos
Leucina-tRNA Ligase/metabolismo , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neoplasias/enzimologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Leucina-tRNA Ligase/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Monoméricas de Ligação ao GTP/genética , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA