Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594787

RESUMO

Cdc28, the homolog of mammalian Cdk1, is a conserved key regulatory kinase for all major cell cycle transitions in yeast. We have found that defects in mitochondrial respiration (including deletion of ATP2, an ATP synthase subunit) inhibit growth of cells carrying a degron allele of Cdc28 (cdc28td) or Cdc28 temperature-sensitive mutations (cdc28-1 and cdc28-1N) at semi-permissive temperatures. Loss of cell proliferation in the atp2Δcdc28td double mutant is associated with aggravated cell cycle arrest and mitochondrial dysfunction, including mitochondrial hyperpolarization and fragmentation. Unexpectedly, in mutants defective in mitochondrial respiration, steady-state protein levels of mutant cdc28 are strongly reduced, accounting for the aggravated growth defects. Stability of Cdc28 is promoted by the Hsp90-Cdc37 chaperone complex. Our results show that atp2Δcdc28td double-mutant cells, but not single mutants, are sensitive to chemical inhibition of the Hsp90-Cdc37 complex, and exhibit reduced levels of additional Hsp90-Cdc37 client kinases, suggesting an inhibition of this complex. In agreement, overexpression of CDC37 improved atp2Δcdc28td cell growth and Cdc28 levels. Overall, our study shows that simultaneous disturbance of mitochondrial respiration and Cdc28 activity reduces the capacity of Cdc37 to chaperone client kinases, leading to growth arrest.


Assuntos
Proteínas de Ciclo Celular , Chaperonas Moleculares , Humanos , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ligação Proteica , Mamíferos/metabolismo , Chaperoninas/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047194

RESUMO

Niemann-Pick type C1 (NPC1) is an endolysosomal transmembrane protein involved in the export of cholesterol and sphingolipids to other cellular compartments such as the endoplasmic reticulum and plasma membrane. NPC1 loss of function is the major cause of NPC disease, a rare lysosomal storage disorder characterized by an abnormal accumulation of lipids in the late endosomal/lysosomal network, mitochondrial dysfunction, and impaired autophagy. NPC phenotypes are conserved in yeast lacking Ncr1, an orthologue of human NPC1, leading to premature aging. Herein, we performed a phosphoproteomic analysis to investigate the effect of Ncr1 loss on cellular functions mediated by the yeast lysosome-like vacuoles. Our results revealed changes in vacuolar membrane proteins that are associated mostly with vesicle biology (fusion, transport, organization), autophagy, and ion homeostasis, including iron, manganese, and calcium. Consistently, the cytoplasm to vacuole targeting (Cvt) pathway was increased in ncr1∆ cells and autophagy was compromised despite TORC1 inhibition. Moreover, ncr1∆ cells exhibited iron overload mediated by the low-iron sensing transcription factor Aft1. Iron deprivation restored the autophagic flux of ncr1∆ cells and increased its chronological lifespan and oxidative stress resistance. These results implicate iron overload on autophagy impairment, oxidative stress sensitivity, and cell death in the yeast model of NPC1.


Assuntos
Sobrecarga de Ferro , Doença de Niemann-Pick Tipo C , Humanos , Saccharomyces cerevisiae/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ferro/metabolismo , Longevidade , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Proteínas de Membrana/metabolismo , Lisossomos/metabolismo , Vacúolos/metabolismo , Autofagia , Sobrecarga de Ferro/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo
3.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445723

RESUMO

Lipid droplets (LDs) are ubiquitous organelles that fulfill essential roles in response to metabolic cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). However, our understanding of signaling networks, especially transcriptional mechanisms, regulating membrane biogenesis is very limited. Here, we show that the nutrient-sensing Target of Rapamycin Complex 1 (TORC1) regulates LD formation at a transcriptional level, by targeting DGA1 expression, in a Sit4-, Mks1-, and Sfp1-dependent manner. We show that cytosolic pH (pHc), co-regulated by the plasma membrane H+-ATPase Pma1 and the vacuolar ATPase (V-ATPase), acts as a second messenger, upstream of protein kinase A (PKA), to adjust the localization and activity of the major transcription factor repressor Opi1, which in turn controls the metabolic switch between phospholipid metabolism and lipid storage. Together, this work delineates hitherto unknown molecular mechanisms that couple nutrient availability and pHc to LD formation through a transcriptional circuit regulated by major signaling transduction pathways.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Concentração de Íons de Hidrogênio , Gotículas Lipídicas/fisiologia , Metabolismo dos Lipídeos/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Proteínas de Membrana/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Fatores de Transcrição/fisiologia
4.
Mol Microbiol ; 109(4): 422-432, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29995317

RESUMO

Iron is an essential element for eukaryotes as it participates as a redox-active co-factor in many biological processes. Since iron is also potentially toxic, iron levels are carefully regulated. In the yeast Saccharomyces cerevisiae, iron homeostasis is maintained by the transcriptional control of the iron acquisition systems (iron regulon), mainly by the iron-responsive transcriptional factors Aft1p and Yap5p. Intracellular iron is stored in the vacuole, mobilized for other locations when necessary, particularly for the mitochondria, the major site of iron-utilizing pathways. Mitochondria also play an additional role as a sensor for the regulation of cellular iron acquisition and intracellular distribution. Mounting evidence suggest that iron acquisition systems are not only responsive to iron levels but also to signaling pathways. The most recognized is the activation of the iron regulon at the diauxic shift, oppositely regulated by PKA and SNF1 kinases, major regulators of glucose signaling. Hog1p, a MAP kinase involved in stress responses, also negatively regulates iron uptake by phosphorylating Aft1p. In this review, we address organellar signaling and signal transduction pathways that play a major role in the coordination of iron homeostasis with cell growth and division.


Assuntos
Ferro/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Homeostase/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/genética , Oxirredução , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-29032057

RESUMO

Iron acquisition systems have to be tightly regulated to assure a continuous supply of iron, since it is essential for survival, but simultaneously to prevent iron overload that is toxic to the cells. In budding yeast, the low­iron sensing transcription factor Aft1p is a master regulator of the iron regulon. Our previous work revealed that bioactive sphingolipids modulate iron homeostasis as yeast cells lacking the sphingomyelinase Isc1p exhibit an upregulation of the iron regulon. In this study, we show that Isc1p impacts on iron accumulation and localization. Notably, Aft1p is activated in isc1Δ cells due to a decrease in its phosphorylation and an increase in its nuclear levels. Consistently, the expression of a phosphomimetic version of Aft1p-S210/S224 that favours its nuclear export abolished iron accumulation in isc1Δ cells. Notably, the Hog1p kinase, homologue of mammalian p38, interacts with and directly phosphorylates Aft1p at residues S210 and S224. However, Hog1p-Aft1p interaction decreases in isc1Δ cells, which likely contributes to Aft1p dephosphorylation and consequently to Aft1p activation and iron overload in isc1Δ cells. These results suggest that alterations in sphingolipid composition in isc1Δ cells may impact on iron homeostasis by disturbing the regulation of Aft1p by Hog1p. To our knowledge, Hog1p is the first kinase reported to directly regulate Aft1p, impacting on iron homeostasis.


Assuntos
Ferro/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Homeostase/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Organismos Geneticamente Modificados , Fosforilação/genética , Ligação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
6.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667270

RESUMO

The Sit4 protein phosphatase plays a key role in orchestrating various cellular processes essential for maintaining cell viability during aging. We have previously shown that SIT4 deletion promotes vacuolar acidification, mitochondrial derepression, and oxidative stress resistance, increasing yeast chronological lifespan. In this study, we performed a proteomic analysis of isolated vacuoles and yeast genetic interaction analysis to unravel how Sit4 influences vacuolar and mitochondrial function. By employing high-resolution mass spectrometry, we show that sit4Δ vacuolar membranes were enriched in Vps27 and Hse1, two proteins that are part of the endosomal sorting complex required for transport-0. In addition, SIT4 exhibited a negative genetic interaction with VPS27, as sit4∆vps27∆ double mutants had a shortened lifespan compared to sit4∆ and vps27∆ single mutants. Our results also show that Vps27 did not increase sit4∆ lifespan by improving protein trafficking or vacuolar sorting pathways. However, Vps27 was critical for iron homeostasis and mitochondrial function in sit4∆ cells, as sit4∆vps27∆ double mutants exhibited high iron levels and impaired mitochondrial respiration. These findings show, for the first time, cross-talk between Sit4 and Vps27, providing new insights into the mechanisms governing chronological lifespan.


Assuntos
Mitocôndrias , Proteína Fosfatase 2 , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacúolos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mitocôndrias/metabolismo , Vacúolos/metabolismo , Ferro/metabolismo , Transporte Proteico , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA