Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Neurochem ; 153(3): 377-389, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31950499

RESUMO

PrPC is a glycoprotein capable to interact with several molecules and mediates diverse signaling pathways. Among numerous ligands, laminin (LN) is known to promote neurite outgrowth and memory consolidation, while amyloid-beta oligomers (Aßo) trigger synaptic dysfunction. In both pathways, mGluR1 is recruited as co-receptor. The involvement of PrPC /mGluR1 in these opposite functions suggests that this complex is a key element in the regulation of synaptic activity. Considering that sleep-wake cycle is important for synaptic homeostasis, we aimed to investigate how sleep deprivation affects the expression of PrPC and its ligands, laminin, Aßo, and mGluR1, a multicomplex that can interfere with neuronal plasticity. To address this question, hippocampi of control (CT) and sleep deprived (SD) C57BL/6 mice were collected at two time points of circadian period (13 hr and 21 hr). We observed that sleep deprivation reduced PrPC and mGluR1 levels with higher effect in active state (21 hr). Sleep deprivation also caused accumulation of Aß peptides in rest period (13 hr), while laminin levels were not affected. In vitro binding assay showed that Aßo can compete with LN for PrPC binding. The influence of Aßo was also observed in neuritogenesis. LN alone promoted longer neurite outgrowth than non-treated cells in both Prnp+/+ and Prnp0/0 genotypes. Aßo alone did not show any effects, but when added together with LN, it attenuated the effects of LN only in Prnp+/+ cells. Altogether, our findings indicate that sleep deprivation regulates the availability of PrPC and Aß peptides, and based on our in vitro assays, these alterations induced by sleep deprivation can negatively affect LN-PrPC interaction, which is known to play roles in neuronal plasticity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Laminina/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas PrPC/metabolismo , Privação do Sono/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
J Neurochem ; 153(6): 727-758, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31562773

RESUMO

Chaperone networks are dysregulated with aging, but whether compromised Hsp70/Hsp90 chaperone function disturbs neuronal resilience is unknown. Stress-inducible phosphoprotein 1 (STI1; STIP1; HOP) is a co-chaperone that simultaneously interacts with Hsp70 and Hsp90, but whose function in vivo remains poorly understood. We combined in-depth analysis of chaperone genes in human datasets, analysis of a neuronal cell line lacking STI1 and of a mouse line with a hypomorphic Stip1 allele to investigate the requirement for STI1 in aging. Our experiments revealed that dysfunctional STI1 activity compromised Hsp70/Hsp90 chaperone network and neuronal resilience. The levels of a set of Hsp90 co-chaperones and client proteins were selectively affected by reduced levels of STI1, suggesting that their stability depends on functional Hsp70/Hsp90 machinery. Analysis of human databases revealed a subset of co-chaperones, including STI1, whose loss of function is incompatible with life in mammals, albeit they are not essential in yeast. Importantly, mice expressing a hypomorphic STI1 allele presented spontaneous age-dependent hippocampal neurodegeneration and reduced hippocampal volume, with consequent spatial memory deficit. We suggest that impaired STI1 function compromises Hsp70/Hsp90 chaperone activity in mammals and can by itself cause age-dependent hippocampal neurodegeneration in mice. Cover Image for this issue: doi: 10.1111/jnc.14749.


Assuntos
Envelhecimento/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/deficiência , Hipocampo/metabolismo , Chaperonas Moleculares/metabolismo , Adaptação Fisiológica/fisiologia , Envelhecimento/genética , Animais , Células-Tronco Embrionárias/metabolismo , Técnicas de Inativação de Genes/métodos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Hipocampo/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/genética , Neurônios/metabolismo
3.
Biochem J ; 474(17): 2981-2991, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28739602

RESUMO

Prion protein (PrPC) was initially described due to its involvement in transmissible spongiform encephalopathies. It was subsequently demonstrated to be a cell surface molecule involved in many physiological processes, such as vesicle trafficking. Here, we investigated the roles of PrPC in the response to insulin and obesity development. Two independent PrPC knockout (KO) and one PrPC overexpressing (TG20) mouse models were fed high-fat diets, and the development of insulin resistance and obesity was monitored. PrPC KO mice fed high-fat diets presented all of the symptoms associated with the development of insulin resistance: hyperglycemia, hyperinsulinemia, and obesity. Conversely, TG20 animals fed high-fat diets showed reduced weight and insulin resistance. Accordingly, the expression of peroxisome proliferator-activated receptor gamma (PPARγ) was reduced in PrPC KO mice and increased in TG20 animals. PrPC KO cells also presented reduced glucose uptake upon insulin stimulation, due to reduced translocation of the glucose transporter Glut4. Thus, our results suggest that PrPC reflects susceptibility to the development of insulin resistance and metabolic syndrome.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Obesidade/metabolismo , PPAR gama/metabolismo , Proteínas PrPC/metabolismo , Proteínas Priônicas/metabolismo , Células 3T3-L1 , Animais , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Cultivadas , Cruzamentos Genéticos , Dieta Hiperlipídica/efeitos adversos , Embrião de Mamíferos/patologia , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/patologia , PPAR gama/genética , Proteínas PrPC/genética , Proteínas Priônicas/genética , Transporte Proteico , Aumento de Peso
4.
J Biol Chem ; 291(42): 21945-21955, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27563063

RESUMO

The prion protein (PrPC) has been suggested to operate as a scaffold/receptor protein in neurons, participating in both physiological and pathological associated events. PrPC, laminin, and metabotropic glutamate receptor 5 (mGluR5) form a protein complex on the plasma membrane that can trigger signaling pathways involved in neuronal differentiation. PrPC and mGluR5 are co-receptors also for ß-amyloid oligomers (AßOs) and have been shown to modulate toxicity and neuronal death in Alzheimer's disease. In the present work, we addressed the potential crosstalk between these two signaling pathways, laminin-PrPC-mGluR5 or AßO-PrPC-mGluR5, as well as their interplay. Herein, we demonstrated that an existing complex containing PrPC-mGluR5 has an important role in AßO binding and activity in neurons. A peptide mimicking the binding site of laminin onto PrPC (Ln-γ1) binds to PrPC and induces intracellular Ca2+ increase in neurons via the complex PrPC-mGluR5. Ln-γ1 promotes internalization of PrPC and mGluR5 and transiently decreases AßO biding to neurons; however, the peptide does not impact AßO toxicity. Given that mGluR5 is critical for toxic signaling by AßOs and in prion diseases, we tested whether mGlur5 knock-out mice would be susceptible to prion infection. Our results show mild, but significant, effects on disease progression, without affecting survival of mice after infection. These results suggest that PrPC-mGluR5 form a functional response unit by which multiple ligands can trigger signaling. We propose that trafficking of PrPC-mGluR5 may modulate signaling intensity by different PrPC ligands.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas PrPC/metabolismo , Doenças Priônicas/metabolismo , Multimerização Proteica , Receptor de Glutamato Metabotrópico 5/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , Camundongos , Camundongos Knockout , Neurônios/patologia , Fragmentos de Peptídeos/genética , Proteínas PrPC/genética , Doenças Priônicas/genética , Doenças Priônicas/patologia , Transporte Proteico/genética , Receptor de Glutamato Metabotrópico 5/genética
5.
Anticancer Drugs ; 27(8): 734-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27272411

RESUMO

The A33 protein, expressed in colorectal tumors, is a target for improving treatment of patients with colorectal cancer. Over the last decade, studies have tested anti-A33 antibody as a therapeutic agent for these patients. Preclinical results were promising, but clinical trials did not confirm positive results. Here, immunohistochemistry in colorectal cancer tissue showed that samples from well-differentiated tumors presented a strong A33 membrane staining, whereas poorly differentiated tumors and mucinous adenocarcinomas showed weak cytoplasmic and nuclear staining. Moderately differentiated tumors presented variable staining. We suggest that in future clinical trials, patients should be selected on the basis of membrane expression of A33.


Assuntos
Neoplasias Colorretais/metabolismo , Glicoproteínas de Membrana/metabolismo , Anticorpos Monoclonais/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Humanos , Glicoproteínas de Membrana/imunologia , Falha de Tratamento
7.
Mol Cell Proteomics ; 12(11): 3253-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23938469

RESUMO

Stress-inducible phosphoprotein 1 (STI1), a cochaperone for Hsp90, has been shown to regulate multiple pathways in astrocytes, but its contributions to cellular stress responses are not fully understood. We show that in response to irradiation-mediated DNA damage stress STI1 accumulates in the nucleus of astrocytes. Also, STI1 haploinsufficiency decreases astrocyte survival after irradiation. Using yeast two-hybrid screenings we identified several nuclear proteins as STI1 interactors. Overexpression of one of these interactors, PIAS1, seems to be specifically involved in STI1 nuclear retention and in directing STI1 and Hsp90 to specific sub-nuclear regions. PIAS1 and STI1 co-immunoprecipitate and PIAS1 can function as an E3 SUMO ligase for STI. Using mass spectrometry we identified five SUMOylation sites in STI1. A STI1 mutant lacking these five sites is not SUMOylated, but still accumulates in the nucleus in response to increased expression of PIAS1, suggesting the possibility that a direct interaction with PIAS1 could be responsible for STI1 nuclear retention. To test this possibility, we mapped the interaction sites between PIAS1 and STI1 using yeast-two hybrid assays and surface plasmon resonance and found that a large domain in the N-terminal region of STI1 interacts with high affinity with amino acids 450-480 of PIAS1. Knockdown of PIAS1 in astrocytes impairs the accumulation of nuclear STI1 in response to irradiation. Moreover, a PIAS1 mutant lacking the STI1 binding site is unable to increase STI1 nuclear retention. Interestingly, in human glioblastoma multiforme PIAS1 expression is increased and we found a significant correlation between increased PIAS1 expression and STI1 nuclear localization. These experiments provide evidence that direct interaction between STI1 and PIAS1 is involved in the accumulation of nuclear STI1. This retention mechanism could facilitate nuclear chaperone activity.


Assuntos
Astrócitos/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos da radiação , Morte Celular/genética , Morte Celular/fisiologia , Morte Celular/efeitos da radiação , Núcleo Celular/metabolismo , Células Cultivadas , Dano ao DNA , Raios gama , Técnicas de Silenciamento de Genes , Células HEK293 , Haploinsuficiência , Proteínas de Choque Térmico/deficiência , Proteínas de Choque Térmico/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/genética , Mapas de Interação de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estresse Fisiológico , Sumoilação , Técnicas do Sistema de Duplo-Híbrido
8.
J Neurosci ; 33(42): 16552-64, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24133259

RESUMO

In Alzheimer's disease (AD), soluble amyloid-ß oligomers (AßOs) trigger neurotoxic signaling, at least partially, via the cellular prion protein (PrP(C)). However, it is unknown whether other ligands of PrP(C) can regulate this potentially toxic interaction. Stress-inducible phosphoprotein 1 (STI1), an Hsp90 cochaperone secreted by astrocytes, binds to PrP(C) in the vicinity of the AßO binding site to protect neurons against toxic stimuli. Here, we investigated a potential role of STI1 in AßO toxicity. We confirmed the specific binding of AßOs and STI1 to the PrP and showed that STI1 efficiently inhibited AßO binding to PrP in vitro (IC50 of ∼70 nm) and also decreased AßO binding to cultured mouse primary hippocampal neurons. Treatment with STI1 prevented AßO-induced synaptic loss and neuronal death in mouse cultured neurons and long-term potentiation inhibition in mouse hippocampal slices. Interestingly, STI1-haploinsufficient neurons were more sensitive to AßO-induced cell death and could be rescued by treatment with recombinant STI1. Noteworthy, both AßO binding to PrP(C) and PrP(C)-dependent AßO toxicity were inhibited by TPR2A, the PrP(C)-interacting domain of STI1. Additionally, PrP(C)-STI1 engagement activated α7 nicotinic acetylcholine receptors, which participated in neuroprotection against AßO-induced toxicity. We found an age-dependent upregulation of cortical STI1 in the APPswe/PS1dE9 mouse model of AD and in the brains of AD-affected individuals, suggesting a compensatory response. Our findings reveal a previously unrecognized role of the PrP(C) ligand STI1 in protecting neurons in AD and suggest a novel pathway that may help to offset AßO-induced toxicity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas de Choque Térmico/metabolismo , Neurônios/metabolismo , Proteínas PrPC/metabolismo , Doença de Alzheimer/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Camundongos , Ligação Proteica , Transdução de Sinais/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
9.
FASEB J ; 27(9): 3594-607, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729591

RESUMO

Stress-inducible phosphoprotein 1 (STI1) is part of the chaperone machinery, but it also functions as an extracellular ligand for the prion protein. However, the physiological relevance of these STI1 activities in vivo is unknown. Here, we show that in the absence of embryonic STI1, several Hsp90 client proteins are decreased by 50%, although Hsp90 levels are unaffected. Mutant STI1 mice showed increased caspase-3 activation and 50% impairment in cellular proliferation. Moreover, placental disruption and lack of cellular viability were linked to embryonic death by E10.5 in STI1-mutant mice. Rescue of embryonic lethality in these mutants, by transgenic expression of the STI1 gene, supported a unique role for STI1 during embryonic development. The response of STI1 haploinsufficient mice to cellular stress seemed compromised, and mutant mice showed increased vulnerability to ischemic insult. At the cellular level, ischemia increased the secretion of STI1 from wild-type astrocytes by 3-fold, whereas STI1 haploinsufficient mice secreted half as much STI1. Interesting, extracellular STI1 prevented ischemia-mediated neuronal death in a prion protein-dependent way. Our study reveals essential roles for intracellular and extracellular STI1 in cellular resilience.


Assuntos
Embrião de Mamíferos/metabolismo , Proteínas de Choque Térmico/metabolismo , Isquemia/metabolismo , Chaperonas Moleculares/metabolismo , Príons/metabolismo , Animais , Blastocisto/metabolismo , Western Blotting , Fator de Transcrição CDX2 , Células Cultivadas , Feminino , Proteínas de Choque Térmico/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Técnicas In Vitro , Isquemia/genética , Camundongos , Camundongos Mutantes , Chaperonas Moleculares/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Gravidez , Príons/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Anticancer Drugs ; 25(2): 200-3, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24126240

RESUMO

We have previously shown that L-methionine inhibits proliferation of breast, prostate, and colon cancer cells. This study extends these findings to BXPC-3 (mutated p53) and HPAC (wild-type p53) pancreatic cancer cells and explores the reversibility of these effects. Cells were exposed to L-methionine (5 mg/ml) for 7 days or for 3 days, followed by 4 days of culture without L-methionine (recovery). Cell proliferation, apoptosis, and cell cycle effects were assessed by flow cytometry after staining for Ki-67 or annexin V/propidium iodide. Cell proliferation was reduced by 31-35% after 7 days of methionine exposure; the effect persisted in BXPC-3 and HPAC cells after 4 days of recovery. Methionine increased apoptosis by 40-75% in HPAC cells, but not in BXPC-3 cells. Continuous exposure to methionine caused accumulation of BXPC-3 cells in the S phase and HPAC cells in both the G0/G1 and S phases; however, after 4 days of recovery, these effects disappeared. In conclusion, L-methionine inhibits proliferation and interferes with the cell cycle of BXPC-3 and HPAC pancreatic cancer cells; the effects on apoptosis remarkably persisted after methionine withdrawal. Apoptosis was induced only in BXPC-3 cells. Some of the differences in the effects of methionine between cell lines may be related to disparate p53 status. These findings warrant further studies on the potential therapeutic benefit of L-methionine against pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Metionina/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias Pancreáticas , Células Tumorais Cultivadas
11.
Cell Mol Life Sci ; 70(17): 3211-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23543276

RESUMO

The co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrP(C)). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20-50, 100-200, and 300-400 nm. These EVs carry STI1 and present many exosomal markers, even though only a subpopulation had the typical exosomal morphology. The only protein, from those evaluated here, present exclusively in vesicles that have exosomal morphology was PrP(C). STI1 partially co-localized with Rab5 and Rab7 in endosomal compartments, and a dominant-negative for vacuolar protein sorting 4A (VPS4A), required for formation of multivesicular bodies (MVBs), impaired EV and STI1 release. Flow cytometry and PK digestion demonstrated that STI1 localized to the outer leaflet of EVs, and its association with EVs greatly increased STI1 activity upon PrP(C)-dependent neuronal signaling. These results indicate that astrocytes secrete a diverse population of EVs derived from MVBs that contain STI1 and suggest that the interaction between EVs and neuronal surface components enhances STI1-PrP(C) signaling.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Vesículas Secretórias/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Hipocampo/citologia , Immunoblotting , Camundongos , Proteínas PrPC/metabolismo , Vesículas Secretórias/ultraestrutura
12.
Neurol Sci ; 35(2): 239-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24091711

RESUMO

The cellular prion protein, encoded by Prnp gene, is involved in neuroprotection, neuroplasticity and neurodevelopment. The variant allele Valine at codon 129 of the Prnp was associated with decreased brain volume in healthy volunteers and schizophrenic patients. We investigate the association between the cerebellum volume and the presence of variant allele Valine at codon 129 of the Prnp gene in patients with mesial temporal lobe epilepsy related to hippocampal sclerosis (MTLE-HS). The Prnp coding sequence was determined in 41 refractory MTLE-HS patients. The cerebellum volume corrected by the intracranial volume of patients with the normal Prnp genotypes was compared with that of patients presenting the variant alleles at codon 129. Twenty patients showed the Met129Met genotype, 16 showed Met129Val, and 5 had Val129Val. There were no association among clinical, demographic, electrophysiological, antiepileptic drugs used, and the presence of the Prnp variant alleles. The presence of Prnp variant allele at codon 129 was not associated with the analyzed cerebellum volume. Prnp variant alleles at codon 129 are not associated with cerebellum volume in patients with refractory MTLE-HS.


Assuntos
Cerebelo/patologia , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/patologia , Príons/genética , Adulto , Alelos , Anticonvulsivantes/uso terapêutico , Encéfalo/patologia , Eletroencefalografia , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Variação Genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Proteínas Priônicas , Convulsões/tratamento farmacológico , Convulsões/genética , Convulsões/patologia , Convulsões/fisiopatologia
13.
J Biol Chem ; 287(52): 43777-88, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23132868

RESUMO

Prions, the agents of transmissible spongiform encephalopathies, require the expression of prion protein (PrP(C)) to propagate disease. PrP(C) is converted into an abnormal insoluble form, PrP(Sc), that gains neurotoxic activity. Conversely, clinical manifestations of prion disease may occur either before or in the absence of PrP(Sc) deposits, but the loss of normal PrP(C) function contribution for the etiology of these diseases is still debatable. Prion disease-associated mutations in PrP(C) represent one of the best models to understand the impact of PrP(C) loss-of-function. PrP(C) associates with various molecules and, in particular, the interaction of PrP(C) with laminin (Ln) modulates neuronal plasticity and memory formation. To assess the functional alterations associated with PrP(C) mutations, wild-type and mutated PrP(C) proteins were expressed in a neural cell line derived from a PrP(C)-null mouse. Treatment with the laminin γ1 chain peptide (Ln γ1), which mimics the Ln binding site for PrP(C), increased intracellular calcium in cells expressing wild-type PrP(C), whereas a significantly lower response was observed in cells expressing mutated PrP(C) molecules. The Ln γ1 did not promote process outgrowth or protect against staurosporine-induced cell death in cells expressing mutated PrP(C) molecules in contrast to cells expressing wild-type PrP(C). The co-expression of wild-type PrP(C) with mutated PrP(C) molecules was able to rescue the Ln protective effects, indicating the lack of negative dominance of PrP(C) mutated molecules. These results indicate that PrP(C) mutations impair process outgrowth and survival mediated by Ln γ1 peptide in neural cells, which may contribute to the pathogenesis of genetic prion diseases.


Assuntos
Laminina/metabolismo , Proteínas PrPC/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Inibidores Enzimáticos/farmacologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Laminina/genética , Camundongos , Camundongos Mutantes , Mutação , Proteínas PrPC/genética , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Estaurosporina/farmacologia
14.
J Neurochem ; 124(2): 210-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23145988

RESUMO

Prion protein (PrP(C)) is a cell surface glycoprotein that is abundantly expressed in nervous system. The elucidation of the PrP(C) interactome network and its significance on neural physiology is crucial to understanding neurodegenerative events associated with prion and Alzheimer's diseases. PrP(C) co-opts stress inducible protein 1/alpha7 nicotinic acetylcholine receptor (STI1/α7nAChR) or laminin/Type I metabotropic glutamate receptors (mGluR1/5) to modulate hippocampal neuronal survival and differentiation. However, potential cross-talk between these protein complexes and their role in peripheral neurons has never been addressed. To explore this issue, we investigated PrP(C)-mediated axonogenesis in peripheral neurons in response to STI1 and laminin-γ1 chain-derived peptide (Ln-γ1). STI1 and Ln-γ1 promoted robust axonogenesis in wild-type neurons, whereas no effect was observed in neurons from PrP(C) -null mice. PrP(C) binding to Ln-γ1 or STI1 led to an increase in intracellular Ca(2+) levels via distinct mechanisms: STI1 promoted extracellular Ca(2+) influx, and Ln-γ1 released calcium from intracellular stores. Both effects depend on phospholipase C activation, which is modulated by mGluR1/5 for Ln-γ1, but depends on, C-type transient receptor potential (TRPC) channels rather than α7nAChR for STI1. Treatment of neurons with suboptimal concentrations of both ligands led to synergistic actions on PrP(C)-mediated calcium response and axonogenesis. This effect was likely mediated by simultaneous binding of the two ligands to PrP(C). These results suggest a role for PrP(C) as an organizer of diverse multiprotein complexes, triggering specific signaling pathways and promoting axonogenesis in the peripheral nervous system.


Assuntos
Sinalização do Cálcio/fisiologia , Gânglios Espinais/fisiologia , Proteínas de Choque Térmico/fisiologia , Laminina/fisiologia , Proteínas PrPC/fisiologia , Receptor Cross-Talk/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Axônios/química , Axônios/fisiologia , Sobrevivência Celular/fisiologia , Líquido Extracelular/química , Líquido Extracelular/fisiologia , Gânglios Espinais/química , Proteínas de Choque Térmico/química , Líquido Intracelular/química , Líquido Intracelular/metabolismo , Laminina/metabolismo , Camundongos , Camundongos Knockout , Cultura Primária de Células , Ligação Proteica/fisiologia , Células Receptoras Sensoriais/química , Regulação para Cima/fisiologia
15.
J Neurochem ; 127(3): 415-25, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23651058

RESUMO

Prion protein (PrP(C) ), a glycosylphosphatidylinositol-anchored protein corrupted in prion diseases, has been shown recently to interact with group I metabotropic glutamate receptors (mGluRs). Moreover, both PrP(C) and mGluRs were proposed to function as putative receptors for ß-amyloid in Alzheimer's disease. PrP(C) can be processed in neurons via α or ß-cleavage to produce PrP(C) fragments that are neuroprotective or toxic, respectively. We found PrP(C) α-cleavage to be 2-3 times higher in the cortex of APPswe/PS1dE9 mice, a mouse model of Alzheimer's disease. A similar age-dependent increase was observed for PrP(C) ß-cleavage. Moreover, we observed considerable age-dependent increase in cortical expression of mGluR1, but not mGluR5. Exposure of cortical neuronal cultures to ß-amyloid oligomers upregulated mGluR1 and PrP(C) α-cleavage, while activation of group I mGluRs increased PrP(C) shedding from the membrane, likely due to increased levels of a disintegrin and metalloprotease10, a key disintegrin for PrP(C) shedding. Interestingly, a similar increase in a disintegrin and metalloprotease10 was detected in the cortex of 9-month-old APPswe/PS1dE9 animals. Our experiments reveal novel and complex processing of PrP(C) in connection with mGluR overexpression that seems to be triggered by ß-amyloid peptides. Prion protein (PrP(C) ) and metabotropic glutamate receptors (mGluR) are implicated in Alzheimer's disease (AD). We found age-dependent increase in PrP(C) processing, ADAM10 and mGluR1 levels in AD mouse model. These changes could be reproduced in cultured cortical neurons treated with Aß peptide. Our findings suggest that increased levels of Aß can trigger compensatory responses that may affect neuronal toxicity.


Assuntos
Anti-Inflamatórios , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/patologia , Inflamação/prevenção & controle , Fármacos Neuroprotetores , Animais
16.
Curr Opin Oncol ; 25(1): 66-75, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23165142

RESUMO

PURPOSE OF REVIEW: Exosomes and microvesicles are secreted particles of 30-200  nm in diameter, delimited by a lipid bilayer and containing a wide range of membrane-bound or free proteins and nucleic acids (in particular mRNA and miRNA). Here, we review the properties of tumor-cell-derived microvesicles as carriers of molecular information in relation to cancer progression and promotion of metastasis. RECENT FINDINGS: Microvesicles from tumor cells operate as signaling platforms that diffuse in the extracellular space to target cells in the microenvironment, modulating the interactions of tumor cells with stromal, inflammatory, dendritic, immune or vascular cells and priming the formation of the metastatic niche. SUMMARY: Because of their stability, exosomes and microvesicles can be retrieved in bodily fluids as biomarkers for cancer detection and monitoring. They offer a range of molecular targets for controlling cell-cell interactions during invasion and metastasis.


Assuntos
Biomarcadores Tumorais/metabolismo , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Neoplasias/diagnóstico , Microambiente Tumoral , Animais , Comunicação Celular , Exossomos/imunologia , Espaço Extracelular/metabolismo , Humanos , Neoplasias/metabolismo
17.
Biochem Biophys Res Commun ; 418(1): 27-32, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22222374

RESUMO

The PrP(C) protein, which is especially present in the cellular membrane of nervous system cells, has been extensively studied for its controversial antioxidant activity. In this study, we elucidated the free radical scavenger activity of purified murine PrP(C) in solution and its participation as a cell protector in astrocytes that were subjected to treatment with an oxidant. In vitro and using an EPR spin-trapping technique, we observed that PrP(C) decreased the oxidation of the DMPO trap in a Fenton reaction system (Cu(2+)/ascorbate/H(2)O(2)), which was demonstrated by approximately 70% less DMPO/OH(). In cultured PrP(C)-knockout astrocytes from mice, the absence of PrP(C) caused an increase in intracellular ROS (reactive oxygen species) generation during the first 3h of H(2)O(2) treatment. This rapid increase in ROS disrupted the cell cycle in the PrP(C)-knockout astrocytes, which increased the population of cells in the sub-G1 phase when compared with cultured wild-type astrocytes. We conclude that PrP(C) in solution acts as a radical scavenger, and in astrocytes, it is essential for protection from oxidative stress caused by an external chemical agent, which is a likely condition in human neurodegenerative CNS disorders and pathological conditions such as ischemia.


Assuntos
Astrócitos/fisiologia , Citoproteção , Estresse Oxidativo/genética , Proteínas PrPC/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Linhagem Celular , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Proteínas PrPC/genética , Proteínas PrPC/farmacologia , Espécies Reativas de Oxigênio/metabolismo
18.
Stem Cells ; 29(7): 1126-36, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21608082

RESUMO

Prion protein (PrP(C) ), when associated with the secreted form of the stress-inducible protein 1 (STI1), plays an important role in neural survival, neuritogenesis, and memory formation. However, the role of the PrP(C) -STI1 complex in the physiology of neural progenitor/stem cells is unknown. In this article, we observed that neurospheres cultured from fetal forebrain of wild-type (Prnp(+/+) ) and PrP(C) -null (Prnp(0/0) ) mice were maintained for several passages without the loss of self-renewal or multipotentiality, as assessed by their continued capacity to generate neurons, astrocytes, and oligodendrocytes. The homogeneous expression and colocalization of STI1 and PrP(C) suggest that they may associate and function as a complex in neurosphere-derived stem cells. The formation of neurospheres from Prnp(0/0) mice was reduced significantly when compared with their wild-type counterparts. In addition, blockade of secreted STI1, and its cell surface ligand, PrP(C) , with specific antibodies, impaired Prnp(+/+) neurosphere formation without further impairing the formation of Prnp(0/0) neurospheres. Alternatively, neurosphere formation was enhanced by recombinant STI1 application in cells expressing PrP(C) but not in cells from Prnp(0/0) mice. The STI1-PrP(C) interaction was able to stimulate cell proliferation in the neurosphere-forming assay, while no effect on cell survival or the expression of neural markers was observed. These data suggest that the STI1-PrP(C) complex may play a critical role in neural progenitor/stem cells self-renewal via the modulation of cell proliferation, leading to the control of the stemness capacity of these cells during nervous system development.


Assuntos
Proteínas de Choque Térmico/metabolismo , Células-Tronco Neurais/fisiologia , Príons/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Príons/biossíntese , Príons/genética
19.
FASEB J ; 25(1): 265-79, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20876210

RESUMO

The prion protein (PrP(C)) is highly expressed in the nervous system, and its abnormal conformer is associated with prion diseases. PrP(C) is anchored to cell membranes by glycosylphosphatidylinositol, and transmembrane proteins are likely required for PrP(C)-mediated intracellular signaling. Binding of laminin (Ln) to PrP(C) modulates neuronal plasticity and memory. We addressed signaling pathways triggered by PrP(C)-Ln interaction in order to identify transmembrane proteins involved in the transduction of PrP(C)-Ln signals. The Ln γ1-chain peptide, which contains the Ln binding site for PrP(C), induced neuritogenesis through activation of phospholipase C (PLC), Ca(2+) mobilization from intracellular stores, and protein kinase C and extracellular signal-regulated kinase (ERK1/2) activation in primary cultures of neurons from wild-type, but not PrP(C)-null mice. Phage display, coimmunoprecipitation, and colocalization experiments showed that group I metabotropic glutamate receptors (mGluR1/5) associate with PrP(C). Expression of either mGluR1 or mGluR5 in HEK293 cells reconstituted the signaling pathways mediated by PrP(C)-Ln γ1 peptide interaction. Specific inhibitors of these receptors impaired PrP(C)-Ln γ1 peptide-induced signaling and neuritogenesis. These data show that group I mGluRs are involved in the transduction of cellular signals triggered by PrP(C)-Ln, and they support the notion that PrP(C) participates in the assembly of multiprotein complexes with physiological functions on neurons.


Assuntos
Laminina/metabolismo , Neuritos/fisiologia , Proteínas PrPC/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/fisiologia , Animais , Benzoatos/farmacologia , Cálcio/metabolismo , Células Cultivadas , Feminino , Glicina/análogos & derivados , Glicina/farmacologia , Células HEK293 , Humanos , Immunoblotting , Laminina/genética , Laminina/farmacologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuritos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas PrPC/genética , Ligação Proteica , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/genética , Fosfolipases Tipo C/metabolismo
20.
J Biol Chem ; 285(47): 36542-50, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20837487

RESUMO

The prion protein (PrP(C)) is a conserved glycosylphosphatidylinositol-anchored cell surface protein expressed by neurons and other cells. Stress-inducible protein 1 (STI1) binds PrP(C) extracellularly, and this activated signaling complex promotes neuronal differentiation and neuroprotection via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP-dependent protein kinase 1 (PKA) pathways. However, the mechanism by which the PrP(C)-STI1 interaction transduces extracellular signals to the intracellular environment is unknown. We found that in hippocampal neurons, STI1-PrP(C) engagement induces an increase in intracellular Ca(2+) levels. This effect was not detected in PrP(C)-null neurons or wild-type neurons treated with an STI1 mutant unable to bind PrP(C). Using a best candidate approach to test for potential channels involved in Ca(2+) influx evoked by STI1-PrP(C), we found that α-bungarotoxin, a specific inhibitor for α7 nicotinic acetylcholine receptor (α7nAChR), was able to block PrP(C)-STI1-mediated signaling, neuroprotection, and neuritogenesis. Importantly, when α7nAChR was transfected into HEK 293 cells, it formed a functional complex with PrP(C) and allowed reconstitution of signaling by PrP(C)-STI1 interaction. These results indicate that STI1 can interact with the PrP(C)·α7nAChR complex to promote signaling and provide a novel potential target for modulation of the effects of prion protein in neurodegenerative diseases.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Choque Térmico/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas PrPC/fisiologia , Receptores Nicotínicos/metabolismo , Animais , Apoptose , Western Blotting , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Proteínas de Choque Térmico/genética , Hipocampo/citologia , Humanos , Imunoprecipitação , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/citologia , Ligação Proteica , RNA Mensageiro/genética , Receptores Nicotínicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA