Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Cell ; 57(1): 95-111.e12, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34919801

RESUMO

How embryos scale patterning according to size is still not fully understood. Through in silico screening and analysis of reaction-diffusion systems that could be responsible for scaling, we predicted the existence of genes whose expression is sensitive to embryo size and which regulate the scaling of embryonic patterning. To find these scalers, we identified genes with strongly altered expression in half-size Xenopus laevis embryos compared with full-size siblings at the gastrula stage. Among found genes, we investigated the role of matrix metalloproteinase-3 (mmp3), which was most strongly downregulated in half-size embryos. We show that Mmp3 scales dorsal-ventral patterning by degrading the slowly diffusing embryonic inducers Noggin1 and Noggin2 but preventing cleavage of the more rapidly diffusing inducer Chordin via degradation of a Tolloid-type proteinase. In addition to unraveling the mechanism underlying the scaling of dorsal-ventral patterning, this work provides proof of principal for scalers identification in embryos of other species.


Assuntos
Padronização Corporal/genética , Metaloproteinase 3 da Matriz/metabolismo , Organizadores Embrionários/metabolismo , Animais , Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/metabolismo , Tamanho Celular , Embrião não Mamífero/metabolismo , Gástrula/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metaloproteinase 3 da Matriz/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia
2.
Cell Rep ; 29(4): 1027-1040.e6, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644900

RESUMO

The molecular basis of higher regenerative capacity of cold-blooded animals comparing to warm-blooded ones is poorly understood. Although this difference in regenerative capacities is commonly thought to be a result of restructuring of the same regulatory gene network, we hypothesized that it may be due to loss of some genes essential for regeneration. We describe here a bioinformatic method that allowed us to identify such genes. For investigation in depth we selected one of them encoding transmembrane protein, named "c-Answer." Using the Xenopus laevis frog as a model cold-blooded animal, we established that c-Answer regulates regeneration of body appendages and telencephalic development through binding to fibroblast growth factor receptors (FGFRs) and P2ry1 receptors and promoting MAPK/ERK and purinergic signaling. This suggests that elimination of c-answer in warm-blooded animals could lead to decreased activity of at least two signaling pathways, which in turn might contribute to changes in mechanisms regulating regeneration and telencephalic development.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Regeneração , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Biologia Computacional , Sistema de Sinalização das MAP Quinases , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Xenopus laevis
3.
Sci Rep ; 8(1): 13035, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158598

RESUMO

In contrast to amniotes (reptiles, birds and mammals), anamniotes (fishes and amphibians) can effectively regenerate body appendages such as fins, limbs and tails. Why such a useful capability was progressively lost in amniotes remains unknown. As we have hypothesized recently, one of the reasons for this could be loss of some genes regulating the regeneration in evolution of amniotes. Here, we demonstrate the validity of this hypothesis by showing that genes of small GTPases Ras-dva1 and Ras-dva2, that had been lost in a stepwise manner during evolution of amniotes and disappeared completely in placental mammals, are important for regeneration in anamniotes. Both Ras-dva genes are quickly activated in regenerative wound epithelium and blastema forming in the amputated adult Danio rerio fins and Xenopus laevis tadpoles' tails and hindlimb buds. Down-regulation of any of two Ras-dva genes in fish and frog resulted in a retardation of regeneration accompanied by down-regulation of the regeneration marker genes. On the other hand, Ras-dva over-expression in tadpoles' tails restores regeneration capacity during the refractory period when regeneration is blocked due to natural reasons. Thus our data on Ras-dva genes, which were eliminated in amniotes but play role in anamniotes regeneration regulation, satisfy our hypothesis.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Regeneração , Animais , Xenopus laevis , Peixe-Zebra
4.
Sci Rep ; 6: 23049, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26973133

RESUMO

Noggin4 is a Noggin family secreted protein whose molecular and physiological functions remain unknown. In this study, we demonstrate that in contrast to other Noggins, Xenopus laevis Noggin4 cannot antagonise BMP signalling; instead, it specifically binds to Wnt8 and inhibits the Wnt/ß -catenin pathway. Live imaging demonstrated that Noggin4 diffusivity in embryonic tissues significantly exceeded that of other Noggins. Using the Fluorescence Recovery After Photobleaching (FRAP) assay and mathematical modelling, we directly estimated the affinity of Noggin4 for Wnt8 in living embryos and determined that Noggin4 fine-tune the Wnt8 posterior-to-anterior gradient. Our results suggest a role for Noggin4 as a unique, freely diffusing, long-range inhibitor of canonical Wnt signalling, thus explaining its ability to promote head development.


Assuntos
Cabeça/embriologia , Proteínas de Homeodomínio/genética , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Algoritmos , Sequência de Aminoácidos , Animais , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Cinética , Microscopia Confocal , Modelos Teóricos , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
5.
Mech Dev ; 121(12): 1425-41, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15511636

RESUMO

Expression of the homeobox gene Xanf-1 starts within the presumptive forebrain primordium of the Xenopus embryo at the midgastrula stage and is inhibited by the late neurula. Such stage-specific inhibition is essential for the normal development as the experimental prolongation of the Xanf-1 expression elicits severe brain abnormalities. To identify transcriptional regulators that are responsible for the Xanf-1 inhibition, we have used the yeast one-hybrid system and identified a novel Xenopus homeobox gene X-nkx-5.1 that belongs to a family of Nkx-5.1 transcription factors. In terms of gene expression, X-nkx-5.1 shares many common features with its orthologs in other species, including expression in the embryonic brain and in the ciliated cells of the otic and lateral line placodes. However, we have also observed several features specific for X-nkx-5.1, such as expression in precursors of the epidermal ciliated cells that may indicate a possible common evolutionary origin of all ciliated cells derived from the embryonic ectoderm. Another specific feature is that the X-nkx-5.1 expression in the anterior neural plate starts early, within the area overlapping the Xanf-1 expression territory at the midneurula stage, and it correlates with the beginning of the Xanf-1 inhibition. Using various loss and gain-of-function techniques, including microinjections of antisense morpholino oligonucleotides and mRNA encoding for the X-nkx-5.1 and its dominant repressor and activator versions, we have shown that X-nkx-5.1 can indeed play a role of stage-specific inhibitor of Xanf-1 in the anterior neural plate during the Xenopus development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Prosencéfalo/embriologia , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Genes Reguladores , Proteínas de Homeodomínio/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Prosencéfalo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Xenopus/embriologia , Xenopus/genética , Proteínas de Xenopus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA