Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biol Chem ; 299(4): 103040, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803960

RESUMO

A hippocampal mossy fiber synapse implicated in learning and memory is a complex structure in which a presynaptic bouton attaches to the dendritic trunk by puncta adherentia junctions (PAJs) and wraps multiply branched spines. The postsynaptic densities (PSDs) are localized at the heads of each of these spines and faces to the presynaptic active zones. We previously showed that the scaffolding protein afadin regulates the formation of the PAJs, PSDs, and active zones in the mossy fiber synapse. Afadin has two splice variants: l-afadin and s-afadin. l-Afadin, but not s-afadin, regulates the formation of the PAJs but the roles of s-afadin in synaptogenesis remain unknown. We found here that s-afadin more preferentially bound to MAGUIN (a product of the Cnksr2 gene) than l-afadin in vivo and in vitro. MAGUIN/CNKSR2 is one of the causative genes for nonsyndromic X-linked intellectual disability accompanied by epilepsy and aphasia. Genetic ablation of MAGUIN impaired PSD-95 localization and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor surface accumulation in cultured hippocampal neurons. Our electrophysiological analysis revealed that the postsynaptic response to glutamate, but not its release from the presynapse, was impaired in the MAGUIN-deficient cultured hippocampal neurons. Furthermore, disruption of MAGUIN did not increase the seizure susceptibility to flurothyl, a GABAA receptor antagonist. These results indicate that s-afadin binds to MAGUIN and regulates the PSD-95-dependent cell surface localization of the AMPA receptor and glutamatergic synaptic responses in the hippocampal neurons and that MAGUIN is not involved in the induction of epileptic seizure by flurothyl in our mouse model.


Assuntos
Proteínas dos Microfilamentos , Receptores de AMPA , Sinapses , Animais , Camundongos , Proteína 4 Homóloga a Disks-Large/metabolismo , Flurotila , Hipocampo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Fatores de Transcrição/metabolismo
2.
J Biol Chem ; 298(10): 102426, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030821

RESUMO

The apical junctional complex (AJC) consists of adherens junctions (AJs) and tight junctions and regulates epithelial integrity and remodeling. However, it is unclear how AJC organization is regulated based on environmental cues. We found here using cultured EpH4 mouse mammary epithelial cells that fetal bovine serum (FBS) in a culture medium showed an activity to promote AJC organization and that FBS showed an activity to promote tight junction formation even in the absence of AJ proteins, such as E-cadherin, αE-catenin, and afadin. Furthermore, we purified the individual factor responsible for these functions from FBS and identified this molecule as lysophosphatidic acid (LPA). In validation experiments, purified LPA elicited the same activity as FBS. In addition, we found that the AJC organization-promoting activity of LPA was mediated through the LPA receptor 1/5 via diacylglycerol-novel PKC and Rho-ROCK pathway activation in a mutually independent, but complementary, manner. We demonstrated that the Rho-ROCK pathway activation-mediated AJC organization was independent of myosin II-induced actomyosin contraction, although this signaling pathway was previously shown to induce myosin II activation. These findings are in contrast to the literature, as previous results suggested an AJC organization-disrupting activity of LPA. The present results indicate that LPA in serum has an AJC organization-promoting activity in a manner dependent on or independent of AJ proteins.


Assuntos
Junções Aderentes , Células Epiteliais , Lisofosfolipídeos , Animais , Camundongos , Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Miosina Tipo II/metabolismo , Junções Íntimas/metabolismo , Lisofosfolipídeos/sangue
3.
Genes Cells ; 23(3): 185-199, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29431241

RESUMO

The apical junctional complex consists of adherens junctions (AJs) and tight junctions (TJs) in polarized epithelial cells, which are attached to each other to form a sheet. Actin filaments (F-actin) are associated with AJs and TJs and required for the formation and maintenance of this complex. l-Afadin is an F-actin-binding protein, which is localized at AJs through binding to the cell adhesion molecule nectin, and regulates the formation of AJs and TJs. However, the role of the F-actin-binding activity of l-afadin for the formation of the apical junctional complex remains unknown. We generated here the cultured EpH4 mouse mammary epithelial cells in which afadin was genetically ablated. In the Ca2+ switch assay, the formation of both AJs and TJs was markedly impaired in the afadin-deficient cells. Re-expression of l-afadin in the afadin-deficient cells fully restored the formation of both AJs and TJs, but the re-expression of the l-afadin mutant lacking the FAB domain did not completely restore the formation of AJs or TJs. These results indicate that the F-actin-binding activity of l-afadin is required for enhancing the formation of both AJs and TJs.


Assuntos
Junções Aderentes/fisiologia , Adesão Celular , Glândulas Mamárias Animais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Junções Íntimas/fisiologia , Actinas/genética , Actinas/metabolismo , Animais , Sistemas CRISPR-Cas , Cálcio/metabolismo , Células Cultivadas , Feminino , Glândulas Mamárias Animais/citologia , Camundongos , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/genética
4.
Mol Cell Neurosci ; 92: 40-49, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29969655

RESUMO

A hippocampal mossy fiber synapse has a complex structure in which presynaptic boutons attach to the dendritic trunk by puncta adherentia junctions (PAJs) and wrap multiply-branched spines, forming synaptic junctions. It was previously shown that afadin regulates the formation of the PAJs cooperatively with nectin-1, nectin-3, and N-cadherin. Afadin is a nectin-binding protein with two splice variants, l-afadin and s-afadin: l-afadin has an actin filament-binding domain, whereas s-afadin lacks it. It remains unknown which variant is involved in the formation of the PAJs or how afadin regulates it. We showed here that re-expression of l-afadin, but not s-afadin, in the afadin-deficient cultured hippocampal neurons in which the PAJ-like structure was disrupted, restored this structure as estimated by the accumulation of N-cadherin and αΝ-catenin. The l-afadin mutant, in which the actin filament-binding domain was deleted, or the l-afadin mutant, in which the αΝ-catenin-binding domain was deleted, did not restore the PAJ-like structure. These results indicate that l-afadin, but not s-afadin, regulates the formation of the hippocampal synapse PAJ-like structure through the binding to actin filaments and αN-catenin. We further found here that l-afadin bound αN-catenin, but not γ-catenin, whereas s-afadin bound γ-catenin, but hardly αN-catenin. These results suggest that the inability of s-afadin to form the hippocampal synapse PAJ-like structure is due to its inability to efficiently bind αN-catenin.


Assuntos
Junções Aderentes/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Sinapses/metabolismo , Actinas/metabolismo , Animais , Sítios de Ligação , Cateninas/metabolismo , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Genes Cells ; 22(5): 472-484, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28397972

RESUMO

A synapse is a cell adhesion structure that permits a neuron to pass a chemical or electrical signal to another neuron. They connect neurons and form neural networks that are essential for brain functions, such as learning and memory. At a chemical synapse, the presynapse and the postsynapse are connected by cell adhesion molecules. The presynapse contains synaptic vesicles and their release machinery, whereas the postsynapse contains postsynaptic densities and receptors for the neurotransmitters. Many proteins constituting a synapse have been identified, but their life-span expression profiles remain elusive. Here, we investigated the expression levels of representative synapse-related proteins by Western blot using the extranuclear supernatant fraction of the brains of mice at various ages. These proteins were classified into seven groups depending on their expression profiles during the embryonic stage, those from postnatal day 6 (P6) to P30, and those after P90. The expression levels of the majority of the proteins were gradually increased from the embryonic stage and then decreased at P14 or P30. After P90, the expression levels were not markedly changed or, in some proteins, increased. These results indicate that the expression levels of the synapse-related proteins are regulated orderly in an aging-dependent manner.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sinapses/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Caderinas/genética , Caderinas/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nectinas
6.
Genes Cells ; 22(8): 715-722, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28631873

RESUMO

A hippocampal mossy fiber synapse has a complex structure and is implicated in learning and memory. In this synapse, the mossy fiber boutons attach to the dendritic shaft by puncta adherentia junctions and wrap around a multiply-branched spine, forming synaptic junctions. We have recently shown using transmission electron microscopy, immunoelectron microscopy and serial block face-scanning electron microscopy that atypical puncta adherentia junctions are formed in the afadin-deficient mossy fiber synapse and that the complexity of postsynaptic spines and mossy fiber boutons, the number of spine heads, the area of postsynaptic densities and the density of synaptic vesicles docked to active zones are decreased in the afadin-deficient synapse. We investigated here the roles of afadin in the functional differentiations of the mossy fiber synapse using the afadin-deficient mice. The electrophysiological studies showed that both the release probability of glutamate and the postsynaptic responsiveness to glutamate were markedly reduced, but not completely lost, in the afadin-deficient mossy fiber synapse, whereas neither long-term potentiation nor long-term depression was affected. These results indicate that afadin plays roles in the functional differentiations of the presynapse and the postsynapse of the hippocampal mossy fiber synapse.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Animais , Células Cultivadas , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Fibras Musgosas Hipocampais/fisiologia , Fibras Musgosas Hipocampais/ultraestrutura , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/fisiologia , Densidade Pós-Sináptica/ultraestrutura
7.
Genes Cells ; 22(8): 742-755, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28695613

RESUMO

A hippocampal mossy fiber synapse, which is implicated in learning and memory, has a complex structure. We have previously shown using afadin-deficient mice that afadin plays multiple roles in the structural and functional differentiations of this synapse. We investigated here using a co-culture system with cultured hippocampal neurons and non-neuronal COS-7 cells expressing synaptogenic cell adhesion molecules (CAMs) whether afadin is involved in the presynaptic differentiation of hippocampal synapses. Postsynaptic CAMs NGL-3 (alias, a Lrrc4b gene product) and neuroligin induced presynaptic differentiation by trans-interacting with their respective presynaptic binding CAMs LAR (alias, a Ptprf gene product) and neurexin. This activity of NGL-3, but not neuroligin, was dependent on afadin, but not the afadin-binding presynaptic CAM nectin-1. The afadin-binding postsynaptic CAM nectin-3 did not induce presynaptic differentiation. Immunofluorescence and immunoelectron microscopy analyses showed that afadin was localized mainly at puncta adherentia junctions, but partly at synaptic junctions, of the mossy fiber synapse. ß-Catenin and γ-catenin known to bind to LAR were co-immunoprecipitated with afadin from the lysate of mouse brain. These results suggest that afadin is involved in the NGL-3-LAR system-induced presynaptic differentiation of hippocampal neurons cooperatively with ß-catenin and γ-catenin in a nectin-1-independent manner.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Hipocampo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas Ligadas por GPI/genética , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/genética , Fibras Musgosas Hipocampais/ultraestrutura , Nectinas/genética , Nectinas/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Ligação Proteica , beta Catenina/metabolismo , gama Catenina/metabolismo
8.
Mol Cell Neurosci ; 79: 34-44, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28041940

RESUMO

The hippocampal formation with tightly packed neurons, mainly at the dentate gyrus, CA3, CA2, and CA1 regions, constitutes a one-way neural circuit, which is associated with learning and memory. We previously showed that the cell adhesion molecules nectins and its binding protein afadin play roles in the formation of the mossy fiber synapses which are formed between the mossy fibers of the dentate gyrus granule cells and the dendrites of the CA3 pyramidal cells. We showed here that in the afadin-deficient hippocampal formation, the dentate gyrus granules cells and the CA3, CA2, and CA1 pyramidal cells were abnormally located; the mossy fiber trajectory was abnormally elongated; the CA3 pyramidal cells were abnormally differentiated; and the densities of the presynaptic boutons on the mossy fibers and the apical dendrites of the CA3 pyramidal cells were decreased. These results indicate that afadin plays roles not only in the formation of the mossy fiber synapses but also in the formation of the cellular architecture of the hippocampus and the dentate gyrus.


Assuntos
Região CA3 Hipocampal/citologia , Giro Denteado/citologia , Proteínas dos Microfilamentos/metabolismo , Células Piramidais/citologia , Animais , Região CA3 Hipocampal/crescimento & desenvolvimento , Região CA3 Hipocampal/metabolismo , Células Cultivadas , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Fibras Musgosas Hipocampais/metabolismo , Neurogênese , Células Piramidais/metabolismo , Sinapses/metabolismo
9.
Genes Cells ; 21(1): 88-98, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26663531

RESUMO

Proper operation of a neural circuit relies on both excitatory and inhibitory synapses. We previously showed that cell adhesion molecules nectin-1 and nectin-3 are localized at puncta adherentia junctions of the hippocampal mossy fiber glutamatergic excitatory synapses and that they do not regulate the excitatory synaptic transmission onto the CA3 pyramidal cells. We studied here the roles of these nectins in the GABAergic inhibitory synaptic transmission onto the CA3 pyramidal cells using nectin-1-deficient and nectin-3-deficient cultured mouse hippocampal slices. In these mutant slices, the amplitudes and frequencies of miniature excitatory postsynaptic currents were indistinguishable from those in the control slices. In the nectin-1-deficient slices, but not in the nectin-3-deficient slices, however, the amplitude of miniature inhibitory postsynaptic currents (mIPSCs) was larger than that in the control slices, although the frequency of the mIPSCs was not different between these two groups of slices. In the dissociated culture of hippocampal neurons from the nectin-1-deficient mice, the amplitude and frequency of mIPSCs were indistinguishable from those in the control neurons. Nectin-1 was not localized at or near the GABAergic inhibitory synapses. These results indicate that nectin-1 regulates the neuronal activities in the CA3 region of the hippocampus by suppressing the GABAergic inhibitory synaptic transmission.


Assuntos
Região CA3 Hipocampal/metabolismo , Moléculas de Adesão Celular/metabolismo , Neurônios GABAérgicos/metabolismo , Potenciais Pós-Sinápticos Inibidores , Transmissão Sináptica , Animais , Região CA3 Hipocampal/ultraestrutura , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Neurônios GABAérgicos/ultraestrutura , Glutamatos/metabolismo , Camundongos , Nectinas , Células Piramidais/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura
10.
Mol Cell Neurosci ; 71: 25-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26687760

RESUMO

Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology of a giant mossy fiber-CA3 pyramidal cell synapse, and found that the mossy fiber bouton altered its morphology with an increase in the number of segments. This activity-dependent alteration in morphology required the activation of glutamate receptors and an increase in postsynaptic calcium concentration. In addition, the intercellular retrograde messengers nitric oxide and arachidonic acid were necessary. Simultaneous recordings demonstrated that the morphological complexity of the presynaptic bouton and the amplitude of excitatory postsynaptic currents were well correlated. Thus, a single mossy fiber synapse has the potential for activity-dependent morphological plasticity at the presynaptic bouton, which may be important for learning and memory.


Assuntos
Região CA3 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores , Fibras Musgosas Hipocampais/fisiologia , Células Piramidais/citologia , Animais , Ácido Araquidônico/metabolismo , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/metabolismo , Cálcio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/metabolismo , Plasticidade Neuronal , Óxido Nítrico/metabolismo , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptores de Glutamato/metabolismo
11.
Mol Cell Neurosci ; 68: 143-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26169026

RESUMO

Olfactory mitral cells extend lateral secondary dendrites that contact the lateral secondary and apical primary dendrites of other mitral cells in the external plexiform layer (EPL) of the olfactory bulb. The lateral dendrites further contact granule cell dendrites, forming dendrodendritic reciprocal synapses in the EPL. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. We recently showed that the immunoglobulin-like cell adhesion molecule nectin-1 constitutes a novel adhesion apparatus at the contacts between mitral cell lateral dendrites, between mitral cell lateral and apical dendrites, and between mitral cell lateral dendrites and granule cell dendritic spine necks in the deep sub-lamina of the EPL of the developing mouse olfactory bulb and named them nectin-1 spots. We investigated here the role of the nectin-1 spots in the formation of dendritic structures in the EPL of the mouse olfactory bulb. We showed that in cultured nectin-1-knockout mitral cells, the number of branching points of mitral cell dendrites was reduced compared to that in the control cells. In the deep sub-lamina of the EPL in the nectin-1-knockout olfactory bulb, the number of branching points of mitral cell lateral dendrites and the number of dendrodendritic reciprocal synapses were reduced compared to those in the control olfactory bulb. These results indicate that the nectin-1 spots regulate the branching of mitral cell dendrites in the deep sub-lamina of the EPL and suggest that the nectin-1 spots are required for odor information processing in the olfactory bulb.


Assuntos
Moléculas de Adesão Celular/metabolismo , Dendritos/fisiologia , Regulação da Expressão Gênica/genética , Neurônios/citologia , Bulbo Olfatório/citologia , Actinas/genética , Actinas/metabolismo , Animais , Biotina/análogos & derivados , Moléculas de Adesão Celular/genética , Células Cultivadas , Dextranos , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Nectinas , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
12.
J Neurosci ; 34(36): 12104-20, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25186755

RESUMO

Cornichon homologs (CNIHs) are AMPA-type glutamate receptor (AMPAR) auxiliary subunits that modulate AMPAR ion channel function and trafficking. Mechanisms underlying this interaction and functional modulation of the receptor complex are currently unclear. Here, using proteins expressed from mouse and rat cDNA, we show that CNIH-3 forms a stable complex with tetrameric AMPARs and contributes to the transmembrane density in single-particle electron microscopy structures. Peptide array-based screening and in vitro mutagenesis identified two clusters of conserved membrane-proximal residues in CNIHs that contribute to AMPAR binding. Because CNIH-1 binds to AMPARs but modulates gating at a significantly lower magnitude compared with CNIH-3, these conserved residues mediate a direct interaction between AMPARs and CNIHs. In addition, residues in the extracellular loop of CNIH-2/3 absent in CNIH-1/4 are critical for both AMPAR interaction and gating modulation. On the AMPAR extracellular domains, the ligand-binding domain and possibly a stretch of linker, connecting the ligand-binding domain to the fourth membrane-spanning segment, is the principal contact point with the CNIH-3 extracellular loop. In contrast, the membrane-distal N-terminal domain is less involved in AMPAR gating modulation by CNIH-3 and AMPAR binding to CNIH-3. Collectively, our results identify conserved residues in the membrane-proximal region of CNIHs that contribute to AMPAR binding and an additional unique segment in the CNIH-2/3 extracellular loop required for both physical interaction and gating modulation of the AMPAR. Consistent with the dissociable properties of binding and gating modulation, we identified a mutant CNIH-3 that preserves AMPAR binding capability but has attenuated activity of gating modulation.


Assuntos
Receptores de AMPA/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico , Masculino , Dados de Sequência Molecular , Ligação Proteica , Ratos , Receptores de AMPA/química , Receptores de AMPA/genética
13.
Genes Cells ; 19(12): 853-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25263091

RESUMO

l-Afadin was originally purified from rat brain as an actin filament (F-actin)-binding protein that was homologous to the AF-6 gene product. Concomitantly, s-afadin that did not show an F-actin-binding capability was copurified with l-afadin. Structurally, s-afadin lacks the C-terminal F-actin-binding domain but has two short sequences that were not present in l-afadin. The properties and roles of l-afadin have intensively been investigated, but those of s-afadin have poorly been understood. We show here an additional difference in their biochemical properties other than binding to F-actin between l-afadin and s-afadin. Both l-afadin and s-afadin bound to nectins, immunoglobulin-like cell adhesion molecules, whereas s-afadin more preferentially bound to nectins than l-afadin. The PDZ domain of l-afadin and s-afadin was essential for their binding to nectin-3. The dilute domain of l-afadin negatively regulated its binding to nectin-3, but the deletion of the C-terminal F-actin-binding domain of l-afadin did not increase the binding of l-afadin to nectin-3. These results indicate that the s-afadin-specific C-terminal inserts may be involved in its preference of binding to nectin-3 and raise the possibility that there are proteins other than nectins that more preferentially bind s-afadin than l-afadin.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neurônios/metabolismo , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Adesão Celular , Células Cultivadas , Camundongos Endogâmicos C57BL , Nectinas , Ligação Proteica
14.
iScience ; 27(4): 109577, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38623325

RESUMO

In vertebrates, retinal neural circuitry for visual perception is organized in specific layers. The outer plexiform layer is the first synaptic region in the visual pathway, where photoreceptor synaptic terminals connect with bipolar and horizontal cell processes. However, molecular mechanisms underlying cone synapse formation to mediate OFF pathways remain unknown. This study reveals that Necl-1/CADM3 is localized at S- and S/M-opsin-containing cones and dendrites of type 4 OFF cone bipolar cells (CBCs). In Necl-1-/- mouse retina, synapses between cones and type 4 OFF CBCs were dislocated, horizontal cell distribution became abnormal, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors were dislocated. Necl-1-/- mice exhibited aberrant short-wavelength-light-elicited signal transmission from cones to OFF CBCs, which was rescued by AMPA receptor potentiator. Additionally, Necl-1-/- mice showed impaired optokinetic responses. These findings suggest that Necl-1 regulates cone synapse formation to mediate OFF cone pathways elicited by short-wavelength light in mouse retina.

15.
J Neurosci ; 31(10): 3565-79, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21389213

RESUMO

The precise knowledge of the subunit assembly process of NMDA receptors (NMDA-Rs) is essential to understand the receptor architecture and underlying mechanism of channel function. Because NMDA-Rs are obligatory heterotetramers requiring the GluN1 subunit, it is critical to investigate how GluN1 and GluN2 type subunits coassemble into tetramers. By combining approaches in cell biology, biochemistry, single particle electron microscopy, and x-ray crystallography, we report the mechanisms and phenotypes of mutant GluN1 subunits that are defective in receptor maturation. The T110A mutation in the N-terminal domain (NTD) of the GluN1 promotes heterodimerization between the NTDs of GluN1 and GluN2, whereas the Y109C mutation in the adjacent residue stabilizes the homodimer of the NTD of GluN1. The crystal structure of the NTD of GluN1 revealed the mechanism underlying the biochemical properties of these mutants. Effects of these mutations on the maturation of heteromeric NMDA-Rs were investigated using a receptor trafficking assay. Our results suggest that the NTDs of the GluN1 subunit initially form homodimers and the subsequent dimer dissociation is critical for forming heterotetrameric NMDA-Rs containing GluN2 subunits, defining a molecular determinant for receptor assembly. The domain arrangement of the dimeric NTD of GluN1 is unique among the ionotropic glutamate receptors and predicts that the structure and mechanism around the NTDs of NMDA-Rs are different from those of the homologous AMPA and kainate receptors.


Assuntos
Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Linhagem Celular , Células Cultivadas , Cromatografia em Gel , Cristalografia por Raios X , Humanos , Conformação Proteica , Subunidades Proteicas/química , Receptores de N-Metil-D-Aspartato/química
16.
J Neurosci ; 30(7): 2728-40, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20164357

RESUMO

Subunit assembly governs regulation of AMPA receptor (AMPA-R) synaptic delivery and determines biophysical parameters of the ion channel. However, little is known about the molecular pathways of this process. Here, we present single-particle EM three-dimensional structures of dimeric biosynthetic intermediates of the GluA2 subunit of AMPA-Rs. Consistent with the structures of intact tetramers, the N-terminal domains of the biosynthetic intermediates form dimers. Transmembrane domains also dimerize despite the two ligand-binding domains (LBDs) being separated. A significant difference was detected between the dimeric structures of the wild type and the L504Y mutant, a point mutation that blocks receptor trafficking and desensitization. In contrast to the wild type, whose LBD is separated, the LBD of the L504Y mutant was detected as a single density. Our results provide direct structural evidence that separation of the LBD within the intact dimeric subunits is critical for efficient tetramerization in the endoplasmic reticulum and further trafficking of AMPA-Rs. The contribution of stargazin on the subunit assembly of AMPA-R was examined. Our data suggest that stargazin affects AMPA-R trafficking at a later stage of receptor maturation.


Assuntos
Canais de Cálcio/metabolismo , Receptores de AMPA/metabolismo , Canais de Cálcio/química , Linhagem Celular Transformada , Células Cultivadas , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Humanos , Leucina/genética , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Modelos Moleculares , Conformação Molecular , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estrutura Terciária de Proteína , Receptores de AMPA/química , Receptores de AMPA/genética , Receptores de AMPA/ultraestrutura , Frações Subcelulares/metabolismo , Fatores de Tempo , Transfecção/métodos , Tirosina/genética
17.
Front Aging Neurosci ; 12: 609911, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33776740

RESUMO

The hypothalamus plays a central role in homeostasis and aging. The hypothalamic arcuate nucleus (ARC) controls homeostasis of food intake and energy expenditure and retains adult neural stem cells (NSCs)/progenitor cells. Aging induces the loss of NSCs and the enhancement of inflammation, including the activation of glial cells in the ARC, but aging-associated alterations of the hypothalamic cells remain obscure. Here, we identified Sox2 and NeuN double-positive cells in a subpopulation of cells in the mouse ARC. These cells were reduced in number with aging, although NeuN-positive neuronal cells were unaltered in the total number. Diet-induced obesity mice fed with high-fat diet presented a similar hypothalamic alteration to aged mice. This study provides a new insight into aging-induced changes in the hypothalamus.

18.
Neuron ; 106(1): 37-65.e5, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32027825

RESUMO

The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities.


Assuntos
Marcação de Genes/métodos , Integrases/genética , Neurônios/metabolismo , Oócitos/metabolismo , Recombinação Genética/genética , Espermatozoides/metabolismo , Animais , Feminino , Genes Reporter , Células Germinativas , Masculino , Camundongos , Camundongos Transgênicos , Mosaicismo
19.
J Med Dent Sci ; 55(3-4): 247-54, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19697512

RESUMO

Cre complementation is a process of reconstitution of the activity of DNA recombinase by noncovalent association of multiple segments of Cre recombinase, which are enzymatically inactive by themselves. Cre complementation is potentially useful in restriction of Cre activity in a specific subset of cells, with temporal regulation, by limiting overlap in expression of Cre fragments. We analyzed the efficiency of Cre complementation using three different dimerizing modules in the context of non-neuronal cells and found differential Cre complementation efficiency. We further tested the efficiency of Cre complementation in primary hippocampal neurons derived from transgenic mice harboring a reporter gene flanked by loxP sites and confirmed differential activity of dimerization modules in Cre-dependent recombination of the transgene. These results suggest possible application of dimerizer-based Cre complementation in inducible expression/inactivation of target genes in a specific subset of neurons in the complex environment of nervous tissue in vivo.


Assuntos
Regulação da Expressão Gênica/genética , Hipocampo/citologia , Integrases/genética , Neurônios/metabolismo , Multimerização Proteica , Adenoviridae/genética , Animais , Células COS , Chlorocebus aethiops , DNA/genética , Estudos de Viabilidade , Genes Reporter/genética , Teste de Complementação Genética , Vetores Genéticos/genética , Hipocampo/metabolismo , Processamento de Imagem Assistida por Computador , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Células Piramidais/metabolismo , Técnicas de Cultura de Tecidos , Transfecção , Transgenes/genética
20.
J Comp Neurol ; 525(12): 2719-2734, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28498492

RESUMO

A hippocampal mossy fiber synapse, which is implicated in learning and memory, has a complex structure in which mossy fiber boutons attach to the dendritic shaft by puncta adherentia junctions (PAJs) and wrap around a multiply-branched spine, forming synaptic junctions. Here, we electron microscopically analyzed the ultrastructure of this synapse in afadin-deficient mice. Transmission electron microscopy analysis revealed that typical PAJs with prominent symmetrical plasma membrane darkening undercoated with the thick filamentous cytoskeleton were observed in the control synapse, whereas in the afadin-deficient synapse, atypical PAJs with the symmetrical plasma membrane darkening, which was much less in thickness and darkness than those of the control typical PAJs, were observed. Immunoelectron microscopy analysis revealed that nectin-1, nectin-3, and N-cadherin were localized at the control typical PAJs, whereas nectin-1 and nectin-3 were localized at the afadin-deficient atypical PAJs to extents lower than those in the control synapse and N-cadherin was localized at their nonjunctional flanking regions. These results indicate that the atypical PAJs are formed by nectin-1 and nectin-3 independently of afadin and N-cadherin and that the typical PAJs are formed by afadin and N-cadherin cooperatively with nectin-1 and nectin-3. Serial block face-scanning electron microscopy analysis revealed that the complexity of postsynaptic spines and mossy fiber boutons, the number of spine heads, the area of postsynaptic densities, and the density of synaptic vesicles docked to active zones were decreased in the afadin-deficient synapse. These results indicate that afadin plays multiple roles in the complex ultrastructural morphogenesis of hippocampal mossy fiber synapses.


Assuntos
Hipocampo/citologia , Proteínas dos Microfilamentos/metabolismo , Morfogênese/fisiologia , Fibras Musgosas Hipocampais/ultraestrutura , Neurônios/ultraestrutura , Sinapses/metabolismo , Animais , Caderinas/metabolismo , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Dendritos/metabolismo , Dendritos/ultraestrutura , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Modelos Neurológicos , Fibras Musgosas Hipocampais/metabolismo , Nectinas/metabolismo , Neurônios/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Ativados por Sódio , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Sinapses/ultraestrutura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA