RESUMO
Magnetostriction results from the coupling between magnetic and elastic degrees of freedom. Though it is associated with a relatively small energy, we show that it plays an important role in determining the site of an implanted muon, so that the energetically favorable site can switch on crossing a magnetic phase transition. This surprising effect is demonstrated in the cubic rocksalt antiferromagnet MnO which undergoes a magnetostriction-driven rhombohedral distortion at the Néel temperature T_{N}=118 K. Above T_{N}, the muon becomes delocalized around a network of equivalent sites, but below T_{N} the distortion lifts the degeneracy between these equivalent sites. Our first-principles simulations based on Hubbard-corrected density-functional theory and molecular dynamics are consistent with the experimental data and help to resolve a long-standing puzzle regarding muon data on MnO, as well as having wider applicability to other magnetic oxides.
RESUMO
Black phosphorus (BP) stands out among two-dimensional (2D) semiconductors because of its high mobility and thickness dependent direct band gap. However, the quasiparticle band structure of ultrathin BP has remained inaccessible to experiment thus far. Here we use a recently developed laser-based microfocus angle resolved photoemission (µ-ARPES) system to establish the electronic structure of 2-9 layer BP from experiment. Our measurements unveil ladders of anisotropic, quantized subbands at energies that deviate from the scaling observed in conventional semiconductor quantum wells. We quantify the anisotropy of the effective masses and determine universal tight-binding parameters, which provide an accurate description of the electronic structure for all thicknesses.
RESUMO
Despite considerable efforts, accurate computations of electron-phonon and carrier transport properties of low-dimensional materials from first principles have remained elusive. By building on recent advances in the description of long-range electrostatics, we develop a general approach to the calculation of electron-phonon couplings in two-dimensional materials. We show that the nonanalytic behavior of the electron-phonon matrix elements depends on the Wannier gauge, but that a missing Berry connection restores invariance to quadrupolar order. We showcase these contributions in a MoS_{2} monolayer, calculating intrinsic drift and Hall mobilities with precise Wannier interpolations. We also find that the contributions of dynamical quadrupoles to the scattering potential are essential, and that their neglect leads to errors of 23% and 76% in the room-temperature electron and hole Hall mobilities, respectively.
RESUMO
Unraveling the oxidation of graphitic lattice is of great interest for atomic-scale lattice manipulation. Herein, we build epoxy cluster, atom by atom, using Van der Waals' density-functional theory aided by Clar's aromatic π-sextet rule. We predict the formation of cyclic epoxy trimers and its linear chains propagating along the armchair direction of the lattice to minimize the system's energy. Using low-temperature scanning tunneling microscopy on oxidized graphitic lattice, we identify linear chains as bright features that have a threefold symmetry, and which exclusively run along the armchair direction of the lattice confirming the theoretical predictions.
RESUMO
Accurate first-principles predictions of the structural, electronic, magnetic, and electrochemical properties of cathode materials can be key in the design of novel efficient Li-ion batteries. Spinel-type cathode materials LixMn2O4 and LixMn1.5Ni0.5O4 are promising candidates for Li-ion battery technologies, but they present serious challenges when it comes to their first-principles modeling. Here, we use density-functional theory with extended Hubbard functionals-DFT+U+V with on-site U and inter-site V Hubbard interactions-to study the properties of these transition-metal oxides. The Hubbard parameters are computed from first-principles using density-functional perturbation theory. We show that while U is crucial to obtain the right trends in properties of these materials, V is essential for a quantitative description of the structural and electronic properties, as well as the Li-intercalation voltages. This work paves the way for reliable first-principles studies of other families of cathode materials without relying on empirical fitting or calibration procedures.
RESUMO
Koopmans spectral functionals are a class of orbital-density-dependent functionals designed to accurately predict spectroscopic properties. They do so markedly better than their Kohn-Sham density-functional theory counterparts, as demonstrated in earlier works on benchmarks of molecules and bulk systems. This work is a complementary study where-instead of comparing against real, many-electron systems-we test Koopmans spectral functionals on Hooke's atom, a toy two-electron system that has analytical solutions for particular strengths of its harmonic confining potential. As these calculations clearly illustrate, Koopmans spectral functionals do an excellent job of describing Hooke's atom across a range of confining potential strengths. This work also provides broader insights into the features and capabilities of Koopmans spectral functionals more generally.
RESUMO
Describing the nanoscale charge carrier transport at surfaces and interfaces is fundamental for designing high-performance optoelectronic devices. To achieve this, we employ time- and angle-resolved photoelectron spectroscopy with ultraviolet pump and extreme ultraviolet probe pulses. The resulting high surface sensitivity reveals an ultrafast carrier population decay associated with surface-to-bulk transport, which was tracked with a sub-nanometer spatial resolution normal to the surface, and on a femtosecond time scale, in the case of the inorganic CsPbBr3 lead halide perovskite. The decay time exhibits a pronounced carrier density dependence, which is attributed via modeling to enhanced diffusive transport and concurrent recombination. The transport is found to approach an ordinary diffusive regime, limited by electron-hole scattering, at the highest excitation fluences. This approach constitutes an important milestone in our capability to probe hot-carrier transport at solid interfaces with sub-nanometer resolution in a theoretically and experimentally challenging, yet technologically relevant, high-carrier-density regime.
RESUMO
The accuracy and efficiency of electronic-structure methods to understand, predict and design the properties of materials has driven a new paradigm in research. Simulations can greatly accelerate the identification, characterization and optimization of materials, with this acceleration driven by continuous progress in theory, algorithms and hardware, and by adaptation of concepts and tools from computer science. Nevertheless, the capability to identify and characterize materials relies on the predictive accuracy of the underlying physical descriptions, and on the ability to capture the complexity of realistic systems. We provide here an overview of electronic-structure methods, of their application to the prediction of materials properties, and of the different strategies employed towards the broader goals of materials design and discovery.
RESUMO
Phonon-assisted luminescence is a key property of defect centers in semiconductors, and can be measured to perform the readout of the information stored in a quantum bit, or to detect temperature variations. The investigation of phonon-assisted luminescence usually employs phenomenological models, such as that of Huang and Rhys, with restrictive assumptions that can fail to be predictive. In this work, we predict luminescence and study exciton-phonon couplings within a rigorous many-body perturbation theory framework, an analysis that has never been performed for defect centers. In particular, we study the optical emission of the negatively charged boron vacancy in 2D hexagonal boron nitride, which currently stands out among defect centers in 2D materials thanks to its promise for applications in quantum information and quantum sensing. We show that phonons are responsible for the observed luminescence, which otherwise would be dark due to symmetry. We also show that the symmetry breaking induced by the static Jahn-Teller effect is not able to describe the presence of the experimentally observed peak at 1.5 eV.
RESUMO
Two-dimensional superconductors attract great interest both for their fundamental physics and for their potential applications, especially in the rapidly growing field of quantum computing. Despite intense theoretical and experimental efforts, materials with a reasonably high transition temperature are still rare. Even more rare are those that combine superconductivity with a nontrivial band topology that could potentially give rise to exotic states of matter. Here, we predict a remarkably high superconducting critical temperature of 21 K in the easily exfoliable, topologically nontrivial 2D semimetal W2N3. By studying its electronic and superconducting properties as a function of doping and strain, we also find large changes in the electron-phonon interactions that make this material a unique platform to study different coupling regimes and test the limits of current theories of superconductivity. Last, we discuss the possibility of tuning the material to achieve coexistence of superconductivity and topologically nontrivial edge states.
RESUMO
A recent 2D spinFET concept proposes to switch electrostatically between two separate sublayers with strong and opposite intrinsic Rashba effects, exploiting the spin-layer-locking mechanism in centrosymmetric materials with local dipole fields. Here, we propose a novel monolayer material within this family, lutetium oxide iodide (LuIO). It displays one of the largest Rashba effects among 2D materials (up to kR = 0.08 Å-1), leading to a π/2 rotation of the spins over just 1 nm. The monolayer was predicted to be exfoliable from its experimentally known 3D bulk counterpart, with a binding energy lower than graphene. We characterize and simulate the interplay of the two gate-controlled parameters for such devices: doping and spin channel selection. We show that the ability to split the spin channels in energy diminishes with doping, leading to specific gate-operation guidelines that can apply to all devices based on spin-layer locking.
Assuntos
Grafite , Óxidos , Iodetos , Lutécio , Compostos OrgânicosRESUMO
Electron-phonon (e-ph) interactions are pervasive in condensed matter, governing phenomena such as transport, superconductivity, charge-density waves, polarons, and metal-insulator transitions. First-principles approaches enable accurate calculations of e-ph interactions in a wide range of solids. However, they remain an open challenge in correlated electron systems (CES), where density functional theory often fails to describe the ground state. Therefore reliable e-ph calculations remain out of reach for many transition metal oxides, high-temperature superconductors, Mott insulators, planetary materials, and multiferroics. Here we show first-principles calculations of e-ph interactions in CES, using the framework of Hubbard-corrected density functional theory (DFT+U) and its linear response extension (DFPT+U), which can describe the electronic structure and lattice dynamics of many CES. We showcase the accuracy of this approach for a prototypical Mott system, CoO, carrying out a detailed investigation of its e-ph interactions and electron spectral functions. While standard DFPT gives unphysically divergent and short-ranged e-ph interactions, DFPT+U is shown to remove the divergences and properly account for the long-range Fröhlich interaction, allowing us to model polaron effects in a Mott insulator. Our work establishes a broadly applicable and affordable approach for quantitative studies of e-ph interactions in CES, a novel theoretical tool to interpret experiments in this broad class of materials.
RESUMO
Efficient electro-catalytic water-splitting technologies require suitable catalysts for the oxygen evolution reaction (OER). The development of novel catalysts could benefit from the achievement of a complete understanding of the reaction mechanism on iridium oxide (IrO2), an active catalyst material that is, however, too scarce for large-scale applications. Considerable insight has already been provided by operando X-ray absorption near-edge structure (XANES) experiments, which paved the way towards an atomistic description of the catalyst's evolution in a working environment. We combine here first-principles simulations augmented with a continuum description of the solvent and electrolyte to investigate the electrochemical stability of various IrO2 interfaces and to predict the XANES cross-section for selected terminations under realistic conditions of applied potential. The comparison of computed O K-edge XANES spectra to corresponding experiments supports the formation of electron-deficient surface oxygen species in the OER-relevant voltage regime. Furthermore, surface hydroxyl groups that are found to be stable up to â¼1 V are suggested to be progressively oxidized at larger potentials, giving rise to a shift in the Ir L3-edge cross-section that qualitatively agrees with measurements.
RESUMO
Quantum ESPRESSO is an open-source distribution of computer codes for quantum-mechanical materials modeling, based on density-functional theory, pseudopotentials, and plane waves, and renowned for its performance on a wide range of hardware architectures, from laptops to massively parallel computers, as well as for the breadth of its applications. In this paper, we present a motivation and brief review of the ongoing effort to port Quantum ESPRESSO onto heterogeneous architectures based on hardware accelerators, which will overcome the energy constraints that are currently hindering the way toward exascale computing.
RESUMO
Two-dimensional materials are emerging as a promising platform for ultrathin channels in field-effect transistors. To this aim, novel high-mobility semiconductors need to be found or engineered. Although extrinsic mechanisms can in general be minimized by improving fabrication processes, the suppression of intrinsic scattering (driven, for example, by electron-phonon interactions) requires modification of the electronic or vibrational properties of the material. Because intervalley scattering critically affects mobilities, a powerful approach to enhance transport performance relies on engineering the valley structure. We show here the power of this strategy using uniaxial strain to lift degeneracies and suppress scattering into entire valleys, dramatically improving performance. This is shown in detail for arsenene, where a 2% strain stops scattering into four of the six valleys and leads to a 600% increase in mobility. The mechanism is general and can be applied to many other materials, including in particular the isostructural antimonene and blue phosphorene.
RESUMO
Quantum spin Hall insulators make up a class of two-dimensional materials with a finite electronic band gap in the bulk and gapless helical edge states. In the presence of time-reversal symmetry, [Formula: see text] topological order distinguishes the topological phase from the ordinary insulating one. Some of the phenomena that can be hosted in these materials, from one-dimensional low-dissipation electronic transport to spin filtering, could be promising for many technological applications in the fields of electronics, spintronics, and topological quantum computing. Nevertheless, the rarity of two-dimensional materials that can exhibit nontrivial [Formula: see text] topological order at room temperature hinders development. Here, we screen a comprehensive database we recently identified of 1825 monolayers that can be exfoliated from experimentally known compounds to search for novel quantum spin Hall insulators. Using density-functional and many-body perturbation theory simulations, we identify 13 monolayers that are candidates for quantum spin Hall insulators including high-performing materials such as AsCuLi2 and (platinum) jacutingaite (Pt2HgSe3). We also identify monolayer Pd2HgSe3 (palladium jacutingaite) as a novel Kane-Mele quantum spin Hall insulator and compare it with platinum jacutingaite. A handful of promising materials are mechanically stable and exhibit [Formula: see text] topological order, either unperturbed or driven by small amounts of strain. Such screening highlights a relative abundance of [Formula: see text] topological order of around 1% and provides an optimal set of candidates for experimental efforts.
RESUMO
We discuss grand canonical simulations based on density-functional theory to study the thermodynamic properties of electrochemical interfaces of metallic electrodes in aqueous environments. Water is represented using implicit solvation, here via the self-consistent continuum solvation (SCCS) model, providing a charge-density dependent dielectric boundary. The electrochemical double layer is accounted for in terms of a phenomenological continuum description. It is shown that the experimental potentials of zero charge and interfacial capacitances can be reproduced for an optimized SCCS parameter set [ρmin = 0.0013, ρmax = 0.010 25]. By performing a detailed derivation and analysis of the interface energetics for selected electrochemical systems, we are able to relate the widely used approach of the computational hydrogen electrode (CHE) to a general grand canonical description of electrified interfaces. In particular, charge-neutral CHE results are shown to be an upper-boundary estimate for the grand canonical interfacial free energies. In order to demonstrate the differences between the CHE and full grand canonical calculations, we study the pristine (100), (110), and (111) surfaces for Pt, Au, Cu, and Ag, and H or Cl electrosorbed on Pt. The calculations support the known surface reconstructions in the aqueous solution for Pt and Au. Furthermore, the predicted potential-pH dependence of proton coverage, surface charge, and interfacial pseudocapacitance for Pt is found to be in close agreement with experimental or other theoretical data as well as the predicted equilibrium shapes for Pt nanoparticles. Finally, Cl is found to interact more strongly than H with the interfacial fields, leading to significantly altered interface energetics and structure upon explicit application of an electrode potential. This work underscores the strengths and eventual limits of the CHE approach and might guide further understanding of the thermodynamics of electrified interfaces.
RESUMO
Continuum electrolyte models represent a practical tool to account for the presence of the diffuse layer at electrochemical interfaces. However, despite the increasing popularity of these in the field of materials science, it remains unclear which features are necessary in order to accurately describe interface-related observables such as the differential capacitance (DC) of metal electrode surfaces. We present here a critical comparison of continuum diffuse-layer models that can be coupled to an atomistic first-principles description of the charged metal surface in order to account for the electrolyte screening at electrified interfaces. By comparing computed DC values for the prototypical Ag(100) surface in an aqueous solution to experimental data, we validate the accuracy of the models considered. Results suggest that a size-modified Poisson-Boltzmann description of the electrolyte solution is sufficient to qualitatively reproduce the main experimental trends. Our findings also highlight the large effect that the dielectric cavity parameterization has on the computed DC values.
RESUMO
Here, using ultrafast electron crystallography (UEC), we report the observation of rippling dynamics in suspended monolayer graphene, the prototypical and most-studied 2D material. The high scattering cross-section for electron/matter interaction, the atomic-scale spatial resolution, and the ultrafast temporal resolution of UEC represent the key elements that make this technique a unique tool for the dynamic investigation of 2D materials, and nanostructures in general. We find that, at early time after the ultrafast optical excitation, graphene undergoes a lattice expansion on a time scale of 5 ps, which is due to the excitation of short-wavelength in-plane acoustic phonon modes that stretch the graphene plane. On a longer time scale, a slower thermal contraction with a time constant of 50 ps is observed and associated with the excitation of out-of-plane phonon modes, which drive the lattice toward thermal equilibrium with the well-known negative thermal expansion coefficient of graphene. From our results and first-principles lattice dynamics and out-of-equilibrium relaxation calculations, we quantitatively elucidate the deformation dynamics of the graphene unit cell.
RESUMO
Fundamental research and technological applications of topological insulators are hindered by the rarity of materials exhibiting a robust topologically nontrivial phase, especially in two dimensions. Here, by means of extensive first-principles calculations, we propose a novel quantum spin Hall insulator with a sizable band gap of â¼0.5 eV that is a monolayer of jacutingaite, a naturally occurring layered mineral first discovered in 2008 in Brazil and recently synthesized. This system realizes the paradigmatic Kane-Mele model for quantum spin Hall insulators in a potentially exfoliable two-dimensional monolayer, with helical edge states that are robust and that can be manipulated exploiting a unique strong interplay between spin-orbit coupling, crystal-symmetry breaking, and dielectric response.