Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15648-15656, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38764425

RESUMO

All-solid-state lithium batteries (ASSLBs) have sparked interest due to their far superior energy density compared to current commercial material, but the heightened reactivity of the negative Li electrode can compromise the long-term cyclability of the cell, calling for the introduction of passivating layers or alloy anodes. In this article, we aim to explain the outstanding stability of LiIn alloy-based anodes over extended cycling by comparing its bulk and interface properties to Li-metal. Using density functional theory, we conducted an in-depth analysis of the LiIn surfaces' formation and subsequent structural stability in interfaces with the solid electrolyte ß-Li3PS4. Several LiIn facets are shown to possess sufficient structural stability, with the (110) surface being the most stable. The stable interfaces established with the ß-Li3PS4(100) surface featured favorable adhesion energy, low strain energy, and little reconstruction. By comparing these interface properties with the bulk properties of Li-metal and LiIn, we highlighted the influence of the cohesion energy, Fermi energy level, and band position of the two materials in the long-term stability of their anodes under battery conditions.

2.
Langmuir ; 39(51): 18797-18806, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079509

RESUMO

Solid electrolytes have shown superior behavior and many advantages over liquid electrolytes, including simplicity in battery design. However, some chemical and structural instability problems arise when solid electrolytes form a direct interface with the negative Li-metal electrode. In particular, it was recognized that the interface between the ß-Li3PS4 crystal and lithium anode is quite unstable and tends to promote structural defects that inhibit the correct functioning of the device. As a possible way out of this problem, we propose a material, Li2S, as a passivating coating for the Li/ß-Li3PS4 interface. We investigated the mutual affinity between Li/Li2S and Li2S/ß-Li3PS4 interfaces by DFT methods and investigated the structural stability through the adhesion energy and mechanical stress. Furthermore, a topological analysis of the electron density identified preferential paths for the migration of Li ions.

3.
Nanotechnology ; 34(31)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37116478

RESUMO

The half Heusler TiNiSn compound is a model system for understanding the relationship among structural, electronic, microstructural and thermoelectric properties. However, the role of defects that deviate from the ideal crystal structure is far from being fully described. In this work, TiNi1+xSn alloys (x= 0, 0.03, 0.06, 0.12) were synthesized by arc melting elemental metals and annealed to achieve equilibrium conditions. Experimental values of the Seebeck coefficient and electrical resistivity, obtained from this work and from the literature, scale with the measured carrier concentration, due to different amounts of secondary phases and interstitial nickel. Density functional theory calculations showed that the presence of both interstitial Ni defects and composition conserving defects narrows the band gap with respect to the defect free structure, affecting the transport properties. Accordingly, results of experimental investigations have been explained confirming that interstitial Ni defects, as well as secondary phases, promote a metallic behavior, raising the electrical conductivity and lowering the absolute values of the Seebeck coefficient.

4.
Nanotechnology ; 34(29)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37019100

RESUMO

The increasing energy demand and the ever more pressing need for clean technologies of energy conversion pose one of the most urgent and complicated issues of our age. Thermoelectricity, namely the direct conversion of waste heat into electricity, is a promising technique based on a long-standing physical phenomenon, which still has not fully developed its potential, mainly due to the low efficiency of the process. In order to improve the thermoelectric performance, a huge effort is being made by physicists, materials scientists and engineers, with the primary aims of better understanding the fundamental issues ruling the improvement of the thermoelectric figure of merit, and finally building the most efficient thermoelectric devices. In this Roadmap an overview is given about the most recent experimental and computational results obtained within the Italian research community on the optimization of composition and morphology of some thermoelectric materials, as well as on the design of thermoelectric and hybrid thermoelectric/photovoltaic devices.

5.
J Chem Phys ; 158(6): 064707, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792490

RESUMO

Using the CRYSTAL17 package at the coupled-perturbed Kohn-Sham (CPKS) level, periodic boundary conditions first-principles calculations are enacted to predict the second harmonic generation second-order nonlinear optical (NLO) susceptibility, χ(2), values of six historical NLO crystals. This selection allowed the comparison between state-of-the-art calculations and experiment. Several computational aspects are tackled to define conditions where the results are converged with respect to the range of lattice summations, to the number of k-points in the first Brillouin zone, to the order of the multipole expansions for evaluating the long-range part of the electrostatic interactions, as well as to the atomic basis set size. A valence triple zeta basis set supplemented with polarization functions has been selected. Then, χ(2) calculations have been performed using a range of exchange-correlation functionals (XCFs). Results show the large impact of the amount of Hartree-Fock (HF) exchange on the amplitude but also on the sign on the χ(2) tensor components. To a given extent, these amplitude effects are consistent with results on molecules, but the sign reversal effects and the non-monotonic behavior of the χ(2) tensor components as a function of the amount of HF exchange are scarcely found for molecules. Then, using the recommended range-separated hybrid XCFs, the CPKS scheme leads to good agreement with experimental data for potassium dihydrogenophosphate, urea, and χZXX (2) of LiNbO3. The agreement is more questionable for χZZZ (2) of LiNbO3 whereas it remains poor for ammonium dihydrogenophosphate and 2-methyl-4-nitroaniline, with large underestimations by about a factor of 3, opening a path to further fine-tuning of the ranges of inclusion of HF exchange.

6.
Phys Chem Chem Phys ; 24(37): 22978-22986, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36125328

RESUMO

Lithium superionic conductor electrolytes may enable the safe use of metallic lithium anodes in all-solid-state batteries. The key to a successful application is a high Li conductivity in the electrolyte material, to be achieved through the maintenance of intimate contact with the electrodes and the knowledge of the chemical nature of that contact. In this manuscript, we tackle this issue by a theoretical ab initio approach. Focusing on the Li6PS5Cl, a thiophosphate with high ionic conductivity, we carry on thorough modeling of the surfaces together with the prediction of the thermal and elastic behaviour. Our investigation leads to some new findings: the bulk structure, as reported in the literature, appears to be metastable, with spontaneous symmetry breaking. Moreover, the relevant stoichiometric surfaces identified for stable and metastable crystal structures are not up-down symmetry related and they expose from one side Li2S and LiCl. Surface reconstructions can be interpreted as local phase transitions. We also predict entirely ab initio the morphology of crystallites, charge, and electrostatic potential at surfaces, together with the effect of temperature on structural properties and the elastic behaviour of this material. Such findings may constitute the relevant groundwork for a better understanding of ionic transport in Li-ion conductors at the electrolyte/anode and electrolyte/cathode interfaces.

7.
J Chem Phys ; 156(7): 074109, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35183075

RESUMO

The quest for "chemical accuracy" is becoming more and more demanded in the field of structure and kinetics of molecules at solid surfaces. In this paper, as an example, we focus on the barrier for hydrogen diffusion on a α-Al2O3(0001) surface, aiming for a couple cluster singles, doubles, and perturbative triples [CCSD(T)]-level benchmark. We employ the density functional theory (DFT) optimized minimum and transition state structures reported by Heiden, Usvyat, and Saalfrank [J. Phys. Chem. C 123, 6675 (2019)]. The barrier is first evaluated at the periodic Hartree-Fock and local Møller-Plesset second-order perturbation (MP2) level of theory. The possible sources of errors are then analyzed, which includes basis set incompleteness error, frozen core, density fitting, local approximation errors, as well as the MP2 method error. Using periodic and embedded fragment models, corrections to these errors are evaluated. In particular, two corrections are found to be non-negligible (both from the chemical accuracy perspective and at the scale of the barrier value of 0.72 eV): the correction to the frozen core-approximation of 0.06 eV and the CCSD(T) correction of 0.07 eV. Our correlated wave function results are compared to barriers obtained from DFT. Among the tested DFT functionals, the best performing for this barrier is B3LYP-D3.

8.
Chemistry ; 25(49): 11528-11537, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31290174

RESUMO

Despite numerous experimental studies since 1824, the binary copper(I) fluoride remains unknown. A crystal structure prediction has been carried out for CuF using the USPEX evolutionary algorithm and a dispersion-corrected hybrid density functional method. In total about 5000 hypothetical structures were investigated. The energetics of the predicted structures were also counter-checked with local second-order Møller-Plesset perturbation theory. Herein 39 new hypothetical copper(I) fluoride structures are reported that are lower in energy compared to the previously predicted cinnabar-type structure. Cuprophilic Cu-Cu interactions are present in all the low-energy structures, leading to ordered Cu substructures such as helical or zig-zag-type Cu-Cu motifs. The lowest-energy structure adopts a trigonal crystal structure with space group P31 21. From an electronic point of view, the predicted CuF modification is a semiconductor with an indirect band gap of 2.3 eV.

9.
Chemistry ; 23(63): 15884-15888, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28940380

RESUMO

Phosphorus nanorings and nanohelices-speculated to exist over 20 years ago-have been systematically derived from one parent structure and studied with quantum chemical methods. The (P8 P2 )n nanorings have been recently synthetized inside carbon nanotube templates, and our comprehensive analysis of possible structural arrangements strongly supports the possibility to experimentally determine the closely related (P8 P2 )n nanohelices. The nanohelices possess very low stiffness, suggesting interesting mechanical properties with nano-spring-like behavior.

10.
Phys Chem Chem Phys ; 19(11): 7699-7707, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28256647

RESUMO

van der Waals interactions are known to play a key role in the formation of weakly bound solids, such as molecular or layered crystals. Here we show that the correct quantum-chemical description of van der Waals dispersion is also essential for a correct description of the relative stability between purely covalently-bound solids like silicon allotropes. To this end, we apply periodic local MP2 and DFT with Grimme's empirical -D3 correction to 11 experimentally determined or yet hypothetical crystalline silicon structures, including the most recently discovered silicon allotropes. Both methods provide similar energy ordering of the polymorphs, which, at the same time, noticeably deviate from the order predicted by standard DFT without an appropriate description of the van der Waals dispersion.

11.
Phys Chem Chem Phys ; 19(22): 14478-14485, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28534569

RESUMO

The A-center in diamond, which consists of two nitrogen atoms substituting two neighboring carbon atoms, has been investigated at the quantum mechanical level using an all-electron Gaussian type basis set, hybrid functionals and the periodic supercell approach. In order to simulate different defect concentrations, four supercells have been considered containing 32, 64, 128 and 216 atoms, respectively. The ground state is a closed shell system where the two neighboring nitrogen atoms are separated, as a consequence of the strong repulsive interaction between the lone pairs, by 2.22 Å. The calculated band gap of a perfect diamond is 5.75 eV, which is in very good agreement with the experimental value of 5.80 eV (at 0 °K); the vertical electronic transition energy from the defective band to the conduction band is 4.75 and 4.46 eV for the cells containing 128 and 216 atoms, respectively. The presence of the A-center does not affect the Raman spectrum of diamond. Several intense peaks appear on the contrary in the IR spectrum, which permit (or should permit) the identification of this defect. The four peaks proposed by Sutherland et al. (Nature, 1954, 174, 901-904) and widely accepted as fingerprints of the A-center (at 480, 1093, 1203, 1282 cm-1), and the most important features of the spectrum published by Davies 22 years later (J. Phys. C: Solid State Phys., 1976, 9, 537-542) are very well reproduced by our simulated spectrum with the largest supercell. The modes in which the nitrogen atoms are more involved are identified by the frequency shift due to the 14N → 15N isotopic substitution; the two modes corresponding to the experimental ones at 480 and 1282 cm-1 show the largest isotopic shift. The graphical animation of the modes (available at ) not only confirms this attribution, but permits also the investigation of the nature of the full set of modes.

12.
J Chem Phys ; 147(11): 114101, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938831

RESUMO

Within the semiclassical Boltzmann transport theory in the constant relaxation-time approximation, we perform an ab initio study of the transport properties of selected systems, including crystalline solids and nanostructures. A local (Gaussian) basis set is adopted and exploited to analytically evaluate band velocities as well as to access full and range-separated hybrid functionals (such as B3LYP, PBE0, or HSE06) at a moderate computational cost. As a consequence of the analytical derivative, our approach is computationally efficient and does not suffer from problems related to band crossings. We investigate and compare the performance of a variety of hybrid functionals in evaluating Boltzmann conductivity. Demonstrative examples include silicon and aluminum bulk crystals as well as two thermoelectric materials (CoSb3, Bi2Te3). We observe that hybrid functionals other than providing more realistic bandgaps-as expected-lead to larger bandwidths and hence allow for a better estimate of transport properties, also in metallic systems. As a nanostructure prototype, we also investigate conductivity in boron-nitride (BN) substituted graphene, in which nanoribbons (nanoroads) alternate with BN ones.

13.
Phys Chem Chem Phys ; 18(30): 20270-5, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27406407

RESUMO

Boron nitride-substituted graphene (BNsG) two-dimensional structures are new materials of wide technological interest due to the rich variety of electronic structures and properties they can exploit. The ability to accurately characterize them is key to their future success. Here we show, by means of ab initio simulations, that the vibrational Raman spectra of such compounds are extremely sensitive to substitution motifs and concentration, and that each structure has unique and distinct features. This result can be useful as a guide for the optimization of production processes.

14.
Phys Chem Chem Phys ; 18(31): 21288-95, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27326546

RESUMO

Quantum-mechanical calculations are performed to investigate the structural, electronic, and infrared (IR) and Raman spectroscopic features of one of the most common radiation-induced defects in diamond: the "dumb-bell" 〈100〉 split self-interstitial. A periodic super-cell approach is used in combination with all-electron basis sets and hybrid functionals of density-functional-theory (DFT), which include a fraction of exact non-local exchange and are known to provide a correct description of the electronic spin localization at the defect, at variance with simpler formulations of the DFT. The effects of both defect concentration and spin state are explicitly addressed. Geometrical constraints are found to prevent the formation of a double bond between the two three-fold coordinated carbon atoms. In contrast, two unpaired electrons are fully localized on each of the carbon atoms involved in the defect. The open-shell singlet state is slightly more stable than the triplet (the energy difference being just 30 meV, as the unpaired electrons occupy orthogonal orbitals) while the closed-shell solution is less stable by about 1.55 eV. The formation energy of the defect from pristine diamond is about 12 eV. The Raman spectrum presents only two peaks of low intensity at wave-numbers higher than the pristine diamond peak (characterized by normal modes extremely localized on the defect), whose positions strongly depend on defect concentration as they blue shift up to 1550 and 1927 cm(-1) at infinite defect dilution. The first of these peaks, also IR active, is characterized by a very high IR intensity, and might then be related to the strong experimental feature of the IR spectrum occurring at 1570 cm(-1). A second very intense IR peak appears at about 500 cm(-1), which, despite being originated from a "wagging" motion of the self-interstitial defect, exhibits a more collective, less localized character.

15.
J Chem Phys ; 145(14): 144901, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27782503

RESUMO

Density functional theory calculations with periodic boundary conditions are exploited to study the infrared spectrum of crystalline polyethylene. Spectral changes lead by the intermolecular packing in the orthorhombic three-dimensional crystal are discussed by means of a careful comparison with calculations carried out for an isolated polymer chain in the all-trans conformation, described as an ideal one-dimensional crystal. The results are analyzed in the framework of the "oligomer approach" through the modelling of the IR spectrum of n-alkanes of different lengths. The study demonstrates that a relevant absorption intensity modulation of CH2 deformation transitions takes place in the solid state. This finding suggests a new interpretation for the experimental evidences collected in the past by means of IR intensity measurement during thermal treatment. Moreover, the comparison between calculations for 3-D crystal and for the isolated polyethylene chain (1-D crystal) allows to put in evidence the effect of the local electric field on the computed infrared intensities. This observation provides guidelines for the comparison between infrared absorption intensities predicted for an isolated unit and for a molecule belonging to a crystal, through the introduction of suitable correction factors based on the refraction index of the material and depending on the dimensionality of such units (0D-molecule; 1D-polymer; 2D-slab).

16.
Phys Chem Chem Phys ; 17(28): 18722-8, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26118553

RESUMO

We have performed periodic density functional and periodic local MP2 calculations for the adsorption of hydrogen fluoride and water on the four low index surfaces (001), (100), (101) and (110) of magnesium fluoride. While the adsorption of HF is described well using B3LYP, MP2 is required for a good description of the adsorption of H2O. Post-optimization dispersion corrections of B3LYP are found to consistently overestimate the adsorption energy. The coordination of surface cations, the presence of hydroxyls on the surface, as well as the coverage appear to play an equally important role in the adsorption.

17.
J Chem Phys ; 143(10): 102805, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26373998

RESUMO

We introduce orbital specific virtuals (OSVs) to represent the truncated pair-specific virtual space in periodic local Møller-Plesset perturbation theory of second order (LMP2). The OSVs are constructed by diagonalization of the LMP2 amplitude matrices which correspond to diagonal Wannier-function (WF) pairs. Only a subset of these OSVs is adopted for the subsequent OSV-LMP2 calculation, namely, those with largest contribution to the diagonal pair correlation energy and with the accumulated value of these contributions reaching a certain accuracy. The virtual space for a general (non diagonal) pair is spanned by the union of the two OSV sets related to the individual WFs of the pair. In the periodic LMP2 method, the diagonal LMP2 amplitude matrices needed for the construction of the OSVs are calculated in the basis of projected atomic orbitals (PAOs), employing very large PAO domains. It turns out that the OSVs are excellent to describe short range correlation, yet less appropriate for long range van der Waals correlation. In order to compensate for this bias towards short range correlation, we augment the virtual space spanned by the OSVs by the most diffuse PAOs of the corresponding minimal PAO domain. The Fock and overlap matrices in OSV basis are constructed in the reciprocal space. The 4-index electron repulsion integrals are calculated by local density fitting and, for distant pairs, via multipole approximation. New procedures for determining the fit-domains and the distant-pair lists, leading to higher efficiency in the 4-index integral evaluation, have been implemented. Generally, and in contrast to our previous PAO based periodic LMP2 method, the OSV-LMP2 method does not require anymore great care in the specification of the individual domains (to get a balanced description when calculating energy differences) and is in that sense a black box procedure. Discontinuities in potential energy surfaces, which may occur for PAO-based calculations if one is not careful, virtually disappear for OSV-LMP2. Moreover, due to much increased compactness of the pair-specific virtual spaces, the OSV-LMP2 calculations are faster and require much less memory than PAO-LMP2 calculations, despite the noticeable overhead of the initial OSV construction procedure.

18.
J Chem Phys ; 143(24): 244102, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26723646

RESUMO

We describe our implementation of a fully analytical scheme, based on the 2n + 1 rule, for computing the coupled perturbed Hartree Fock and Kohn-Sham dynamic first hyperpolarizability tensor ß(-ωσ; ω1, ω2) of periodic 1D (polymer), 2D (slab), and 3D (crystal) systems in the CRYSTAL code [R. Dovesi et al., Int. J. Quantum Chem. 114, 1287 (2014)], which utilizes local Gaussian type basis sets. The dc-Pockels (dc-P) and second harmonic generation (SHG) tensors are included as special cases. It is verified that (i) symmetry requirements are satisfied; (ii) using LiF as an example, the infinite periodic polymer result agrees with extrapolated finite oligomer calculations and, likewise, for the build-up to a 2D slab and a 3D crystal; (iii) the values converge to the static case for low frequencies; and (iv) the Bishop-deKee dispersion formulas relating dc-P, SHG, and general processes are reproduced through quartic terms. Preliminary SHG calculations on multi-layer MoS2 satisfactorily reproduce experimental data.

19.
J Chem Phys ; 143(10): 102811, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26374004

RESUMO

Quantum chemistry methods exploiting density-functional approximations for short-range electron-electron interactions and second-order Møller-Plesset (MP2) perturbation theory for long-range electron-electron interactions have been implemented for periodic systems using Gaussian-type basis functions and the local correlation framework. The performance of these range-separated double hybrids has been benchmarked on a significant set of systems including rare-gas, molecular, ionic, and covalent crystals. The use of spin-component-scaled MP2 for the long-range part has been tested as well. The results show that the value of µ = 0.5 bohr(-1) for the range-separation parameter usually used for molecular systems is also a reasonable choice for solids. Overall, these range-separated double hybrids provide a good accuracy for binding energies using basis sets of moderate sizes such as cc-pVDZ and aug-cc-pVDZ.

20.
J Comput Chem ; 35(24): 1789-800, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25056422

RESUMO

The physisorption of water on graphene is investigated with the hybrid density functional theory (DFT)-functional B3LYP combined with empirical corrections, using moderate-sized basis sets such as 6-31G(d). This setup allows to model the interaction of water with graphene going beyond the quality of classical or semiclassical simulations, while still keeping the computational costs under control. Good agreement with respect to Coupled Cluster with singles and doubles excitations and perturbative triples (CCSD(T)) results is achieved for the adsorption of a single water molecule in a benchmark with two DFT-functionals (Perdew/Burke/Ernzerhof (PBE), B3LYP) and Grimme's empirical dispersion and counterpoise corrections. We apply the same setting to graphene supported by epitaxial hexagonal boron nitride (h-BN), leading to an increased interaction energy. To further demonstrate the achievement of the empirical corrections, we model, entirely from first principles, the electronic properties of graphene and graphene supported by h-BN covered with different amounts of water (one, 10 water molecules per cell and full coverage). The effect of h-BN on these properties turns out to be negligibly small, making it a good candidate for a substrate to grow graphene on.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA