Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(3): e2312913120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190526

RESUMO

General anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones. Using distinct behavioral measures, we show that at identical brain anesthetic concentrations, female mice are more resistant to volatile anesthetics than males. Anesthetic sensitivity is bidirectionally modulated by testosterone. Castration increases anesthetic resistance. Conversely, testosterone administration acutely increases anesthetic sensitivity. Conversion of testosterone to estradiol by aromatase is partially responsible for this effect. In contrast, oophorectomy has no effect. To identify the neuronal circuits underlying sex differences, we performed whole brain c-Fos activity mapping under anesthesia in male and female mice. Consistent with a key role of the hypothalamus, we found fewer active neurons in the ventral hypothalamic sleep-promoting regions in females than in males. In humans, we demonstrate that females regain consciousness and recover cognition faster than males after identical anesthetic exposures. Remarkably, while behavioral and neurocognitive measures in mice and humans point to increased anesthetic resistance in females, cortical activity fails to show sex differences under anesthesia in either species. Cumulatively, we demonstrate that sex differences in anesthetic sensitivity are evolutionarily conserved and not reflected in conventional electroencephalographic-based measures of anesthetic depth. This covert resistance to anesthesia may explain the higher incidence of unintended awareness under general anesthesia in females.


Assuntos
Anestésicos , Caracteres Sexuais , Humanos , Feminino , Masculino , Animais , Camundongos , Anestésicos/farmacologia , Anestesia Geral , Testosterona/farmacologia , Inconsciência
2.
Proc Natl Acad Sci U S A ; 120(19): e2216268120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126719

RESUMO

The brain is assumed to be hypoactive during cardiac arrest. However, animal models of cardiac and respiratory arrest demonstrate a surge of gamma oscillations and functional connectivity. To investigate whether these preclinical findings translate to humans, we analyzed electroencephalogram and electrocardiogram signals in four comatose dying patients before and after the withdrawal of ventilatory support. Two of the four patients exhibited a rapid and marked surge of gamma power, surge of cross-frequency coupling of gamma waves with slower oscillations, and increased interhemispheric functional and directed connectivity in gamma bands. High-frequency oscillations paralleled the activation of beta/gamma cross-frequency coupling within the somatosensory cortices. Importantly, both patients displayed surges of functional and directed connectivity at multiple frequency bands within the posterior cortical "hot zone," a region postulated to be critical for conscious processing. This gamma activity was stimulated by global hypoxia and surged further as cardiac conditions deteriorated in the dying patients. These data demonstrate that the surge of gamma power and connectivity observed in animal models of cardiac arrest can be observed in select patients during the process of dying.


Assuntos
Encéfalo , Parada Cardíaca , Animais , Humanos , Raios gama , Encéfalo/fisiologia , Eletroencefalografia , Coração
3.
Anesthesiology ; 140(6): 1221-1231, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38603803

RESUMO

The near-death experience has been reported since antiquity and is often characterized by the perception of light, interactions with other entities, and life recall. Near-death experiences can occur in a variety of situations, but they have been studied systematically after in-hospital cardiac arrest, with an incidence of 10 to 20%. Long attributed to metaphysical or supernatural causes, there have been recent advances in understanding the neurophysiologic basis of this unique category of conscious experience. This article reviews the epidemiology and neurobiology of near-death experiences, with a focus on clinical and laboratory evidence for a surge of neurophysiologic gamma oscillations and cortical connectivity after cardiac and respiratory arrest.


Assuntos
Encéfalo , Estado de Consciência , Morte , Humanos , Estado de Consciência/fisiologia , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Parada Cardíaca/fisiopatologia , Morte Encefálica/fisiopatologia , Morte Encefálica/diagnóstico
4.
Br J Anaesth ; 132(2): 224-226, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092601

RESUMO

Administration of subanaesthetic doses of ketamine during isoflurane anaesthesia has been shown in animals to deepen the anaesthetised state, while accelerating emergence. Duan and colleagues have now shown that the addition of subanaesthetic doses of esketamine to isoflurane has a similar effect of increasing the burst suppression ratio, while accelerating emergence. Using c-Fos expression and fibre photometry, they show that esketamine activates glutamatergic neurones in the paraventricular nucleus of the thalamus, a structure that regulates wakefulness. Chemogenetic inhibition of these neurones attenuates the arousal-promoting effects, suggesting a causal role of the paraventricular nucleus of the thalamus in esketamine-mediated acceleration of recovery from anaesthesia.


Assuntos
Anestesia , Anestésicos , Isoflurano , Ketamina , Animais , Ketamina/farmacologia , Isoflurano/farmacologia
5.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34413211

RESUMO

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 US Food and Drug Administration (FDA)-approved compounds and clinical candidates, we identified 17 hits that inhibited SARS-CoV-2 infection and analyzed their antiviral activity across multiple cell lines, including lymph node carcinoma of the prostate (LNCaP) cells and a physiologically relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein found in secretory fluids including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.


Assuntos
Antivirais/farmacologia , Fatores Imunológicos/farmacologia , Lactoferrina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Células CACO-2 , Linhagem Celular Tumoral , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Células Epiteliais , Heparitina Sulfato/antagonistas & inibidores , Heparitina Sulfato/imunologia , Heparitina Sulfato/metabolismo , Hepatócitos , Ensaios de Triagem em Larga Escala , Humanos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Células Vero , Tratamento Farmacológico da COVID-19
6.
Neuroimage ; 273: 120097, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031827

RESUMO

The neurobiology of the psychedelic experience is not fully understood. Identifying common brain network changes induced by both classical (i.e., acting at the 5-HT2 receptor) and non-classical psychedelics would provide mechanistic insight into state-specific characteristics. We analyzed whole-brain functional connectivity based on resting-state fMRI data in humans, acquired before and during the administration of nitrous oxide, ketamine, and lysergic acid diethylamide. We report that, despite distinct molecular mechanisms and modes of delivery, all three psychedelics reduced within-network functional connectivity and enhanced between-network functional connectivity. More specifically, all three drugs increased connectivity between right temporoparietal junction and bilateral intraparietal sulcus as well as between precuneus and left intraparietal sulcus. These regions fall within the posterior cortical "hot zone," posited to mediate the qualitative aspects of experience. Thus, both classical and non-classical psychedelics modulate networks within an area of known relevance for consciousness, identifying a biologically plausible candidate for their subjective effects.


Assuntos
Alucinógenos , Ketamina , Humanos , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Encéfalo , Ketamina/farmacologia , Estado de Consciência
7.
Anesthesiology ; 139(5): 568-579, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364282

RESUMO

BACKGROUND: Perioperative neurocognitive disorders are a major public health issue, although there are no validated neurophysiologic biomarkers that predict cognitive function after surgery. This study tested the hypothesis that preoperative posterior electroencephalographic alpha power, alpha frontal-parietal connectivity, and cerebral oximetry would each correlate with postoperative neurocognitive function. METHODS: This was a single-center, prospective, observational study of adult (older than 18 yr) male and female noncardiac surgery patients. Whole-scalp, 16-channel electroencephalography and cerebral oximetry were recorded in the preoperative, intraoperative, and immediate postoperative settings. The primary outcome was the mean postoperative T-score of three National Institutes of Health Toolbox Cognition tests-Flanker Inhibitory Control and Attention, List Sorting Working Memory, and Pattern Comparison Processing Speed. These tests were obtained at preoperative baseline and on the first two postoperative mornings. The lowest average score from the first two postoperative days was used for the primary analysis. Delirium was a secondary outcome (via 3-min Confusion Assessment Method) measured in the postanesthesia care unit and twice daily for the first 3 postoperative days. Last, patient-reported outcomes related to cognition and overall well-being were collected 3 months postdischarge. RESULTS: Sixty-four participants were recruited with a median (interquartile range) age of 59 (48 to 66) yr. After adjustment for baseline cognitive function scores, no significant partial correlation (ρ) was detected between postoperative cognition scores and preoperative relative posterior alpha power (%; ρ = -0.03, P = 0.854), alpha frontal-parietal connectivity (via weight phase lag index; ρ = -0.10, P = 0.570, respectively), or preoperative cerebral oximetry (%; ρ = 0.21, P = 0.246). Only intraoperative frontal-parietal theta connectivity was associated with postoperative delirium (F[1,6,291] = 4.53, P = 0.034). No electroencephalographic or oximetry biomarkers were associated with cognitive or functional outcomes 3 months postdischarge. CONCLUSIONS: Preoperative posterior alpha power, frontal-parietal connectivity, and cerebral oximetry were not associated with cognitive function after noncardiac surgery.


Assuntos
Delírio , Oximetria , Adulto , Humanos , Masculino , Feminino , Estudos Prospectivos , Circulação Cerebrovascular , Assistência ao Convalescente , Delírio/psicologia , Alta do Paciente , Cognição , Eletroencefalografia , Biomarcadores , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/psicologia
8.
Br J Anaesth ; 130(2): e215-e216, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35863952

RESUMO

There is no single electroencephalographic metric for general anaesthesia that is validated for both children and adults. This is, in part, because of the changing electroencephalographic features associated with development. Here, we discuss how alterations in correlated brain activity during general anaesthesia advance our understanding of anaesthetic monitoring and the neurobiology of consciousness.


Assuntos
Anestesia Geral , Encéfalo , Adulto , Humanos , Criança , Estado de Consciência , Eletroencefalografia
9.
Br J Anaesth ; 130(2): e233-e242, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35183346

RESUMO

BACKGROUND: The posterior dominant rhythm (PDR) was the first oscillatory pattern noted in the EEG. Evoked by wakeful eyelid closure, these oscillations dissipate over seconds during loss of arousal. The peak frequency of the PDR maintains stability over years, suggesting utility as a state biomarker in the surveillance of acute cognitive impairments. This EEG signature has not been systematically investigated for tracking cognitive dysfunction after anaesthetic-induced loss of consciousness. METHODS: This substudy of Reconstructing Consciousness and Cognition (NCT01911195) investigated the PDR and cognitive function in 60 adult volunteers randomised to either 3 h of isoflurane general anaesthesia or resting wakefulness. Serial measurements of EEG power and cognitive task performance were assessed relative to pre-intervention baseline. Mixed-effects models allowed quantification of PDR and neurocognitive trajectories after return of responsiveness (ROR). RESULTS: Individuals in the control group showed stability in the PDR peak frequency over several hours (median difference/inter-quartile range [IQR] of 0.02/0.20 Hz, P=0.39). After isoflurane general anaesthesia, the PDR peak frequency was initially reduced at ROR (median difference/IQR of 0.88/0.65 Hz, P<0.001). PDR peak frequency recovered at a rate of 0.20 Hz h-1. After ROR, the PDR peak frequency correlated with reaction time and accuracy on multiple cognitive tasks (P<0.001). CONCLUSION: The temporal trajectory of the PDR peak frequency could be a useful perioperative marker for tracking cognitive dysfunction on the order of hours after surgery, particularly for cognitive domains of working memory, visuomotor speed, and executive function. CLINICAL TRIAL REGISTRATION: NCT01911195.


Assuntos
Anestésicos , Isoflurano , Adulto , Humanos , Isoflurano/farmacologia , Eletroencefalografia , Anestesia Geral , Anestésicos/farmacologia , Cognição , Ritmo alfa
10.
Br J Anaesth ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38071152

RESUMO

BACKGROUND: Sleep disruption is a common occurrence during medical care and is detrimental to patient recovery. Long-term sedation in the critical care setting is a modifiable factor that affects sleep, but the impact of different sedative-hypnotics on sleep homeostasis is not clear. METHODS: We conducted a systematic comparison of the effects of prolonged sedation (8 h) with i.v. and inhalational agents on sleep homeostasis. Adult Sprague-Dawley rats (n=10) received dexmedetomidine or midazolam on separate days. Another group (n=9) received propofol or sevoflurane on separate days. A third group (n=12) received coadministration of dexmedetomidine and sevoflurane. Wakefulness (wake), slow-wave sleep (SWS), and rapid eye movement (REM) sleep were quantified during the 48-h post-sedation period, during which we also assessed wake-associated neural dynamics using two electroencephalographic measures: theta-high gamma phase-amplitude coupling and high gamma weighted phase-lag index. RESULTS: Dexmedetomidine-, midazolam-, or propofol-induced sedation increased wake and decreased SWS and REM sleep (P<0.0001) during the 48-h post-sedation period. Sevoflurane produced no change in SWS, decreased wake for 3 h, and increased REM sleep for 6 h (P<0.02) post-sedation. Coadministration of dexmedetomidine and sevoflurane induced no change in wake (P>0.05), increased SWS for 3 h, and decreased REM sleep for 9 h (P<0.02) post-sedation. Dexmedetomidine, midazolam, and coadministration of dexmedetomidine with sevoflurane reduced wake-associated phase-amplitude coupling (P≤0.01). All sedatives except sevoflurane decreased wake-associated high gamma weighted phase-lag index (P<0.01). CONCLUSIONS: In contrast to i.v. drugs, prolonged sevoflurane sedation produced minimal changes in sleep homeostasis and neural dynamics. Further studies are warranted to assess inhalational agents for long-term sedation and sleep homeostasis.

11.
J Neurosci ; 41(15): 3462-3478, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33664133

RESUMO

Clinical and experimental data from the last nine decades indicate that the preoptic area of the hypothalamus is a critical node in a brain network that controls sleep onset and homeostasis. By contrast, we recently reported that a group of glutamatergic neurons in the lateral and medial preoptic area increases wakefulness, challenging the long-standing notion in sleep neurobiology that the preoptic area is exclusively somnogenic. However, the precise role of these subcortical neurons in the control of behavioral state transitions and cortical dynamics remains unknown. Therefore, in this study, we used conditional expression of excitatory hM3Dq receptors in these preoptic glutamatergic (Vglut2+) neurons and show that their activation initiates wakefulness, decreases non-rapid eye movement (NREM) sleep, and causes a persistent suppression of rapid eye movement (REM) sleep. We also demonstrate, for the first time, that activation of these preoptic glutamatergic neurons causes a high degree of NREM sleep fragmentation, promotes state instability with frequent arousals from sleep, decreases body temperature, and shifts cortical dynamics (including oscillations, connectivity, and complexity) to a more wake-like state. We conclude that a subset of preoptic glutamatergic neurons can initiate, but not maintain, arousals from sleep, and their inactivation may be required for NREM stability and REM sleep generation. Further, these data provide novel empirical evidence supporting the hypothesis that the preoptic area causally contributes to the regulation of both sleep and wakefulness.SIGNIFICANCE STATEMENT Historically, the preoptic area of the hypothalamus has been considered a key site for sleep generation. However, emerging modeling and empirical data suggest that this region might play a dual role in sleep-wake control. We demonstrate that chemogenetic stimulation of preoptic glutamatergic neurons produces brief arousals that fragment sleep, persistently suppresses REM sleep, causes hypothermia, and shifts EEG patterns toward a "lighter" NREM sleep state. We propose that preoptic glutamatergic neurons can initiate, but not maintain, arousal from sleep and gate REM sleep generation, possibly to block REM-like intrusions during NREM-to-wake transitions. In contrast to the long-standing notion in sleep neurobiology that the preoptic area is exclusively somnogenic, we provide further evidence that preoptic neurons also generate wakefulness.


Assuntos
Ácido Glutâmico/metabolismo , Hipotálamo/fisiologia , Neurônios/fisiologia , Sono REM , Vigília , Animais , Ondas Encefálicas , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
12.
Neuroimage ; 249: 118891, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007718

RESUMO

Recent neuroimaging studies have demonstrated that spontaneous brain activity exhibits rich spatiotemporal structure that can be characterized as the exploration of a repertoire of spatially distributed patterns that recur over time. The repertoire of brain states may reflect the capacity for consciousness, since general anesthetics suppress and psychedelic drugs enhance such dynamics. However, the modulation of brain activity repertoire across varying states of consciousness has not yet been studied in a systematic and unified framework. As a unique drug that has both psychedelic and anesthetic properties depending on the dose, ketamine offers an opportunity to examine brain reconfiguration dynamics along a continuum of consciousness. Here we investigated the dynamic organization of cortical activity during wakefulness and during altered states of consciousness induced by different doses of ketamine. Through k-means clustering analysis of the envelope data of source-localized electroencephalographic (EEG) signals, we identified a set of recurring states that represent frequency-specific spatial coactivation patterns. We quantified the effect of ketamine on individual brain states in terms of fractional occupancy and transition probabilities and found that ketamine anesthesia tends to shift the configuration toward brain states with low spatial variability. Furthermore, by assessing the temporal dynamics of the occurrence and transitions of brain states, we showed that subanesthetic ketamine is associated with a richer repertoire, while anesthetic ketamine induces dynamic changes in brain state organization, with the repertoire richness evolving from a reduced level to one comparable to that of normal wakefulness before recovery of consciousness. These results provide a novel description of ketamine's modulation of the dynamic configuration of cortical activity and advance understanding of the neurophysiological mechanism of ketamine in terms of the spatial, temporal, and spectral structures of underlying whole-brain dynamics.


Assuntos
Anestésicos Dissociativos/farmacologia , Ondas Encefálicas/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Eletroencefalografia/métodos , Ketamina/farmacologia , Vigília/efeitos dos fármacos , Adulto , Anestesia Geral , Anestésicos Dissociativos/administração & dosagem , Humanos , Ketamina/administração & dosagem
13.
Eur J Neurosci ; 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545450

RESUMO

Urethane is a general anaesthetic widely used in animal research. The state of urethane anaesthesia is unique because it alternates between macroscopically distinct electrographic states: a slow-wave state that resembles non-rapid eye movement (NREM) sleep and an activated state with features of both REM sleep and wakefulness. Although it is assumed that urethane produces unconsciousness, this has been questioned because of states of cortical activation during drug exposure. Furthermore, the similarities and differences between urethane anaesthesia and physiological sleep are still unclear. In this study, we recorded the electroencephalogram (EEG) and electromyogram in chronically prepared rats during natural sleep-wake states and during urethane anaesthesia. We subsequently analysed the power, coherence, directed connectivity and complexity of brain oscillations and found that EEG under urethane anaesthesia has clear signatures of unconsciousness, with similarities to other general anaesthetics. In addition, the EEG profile under urethane is different in comparison with natural sleep states. These results suggest that consciousness is disrupted during urethane. Furthermore, despite similarities that have led others to conclude that urethane is a model of sleep, the electrocortical traits of depressed and activated states during urethane anaesthesia differ from physiological sleep states.

14.
Anesthesiology ; 137(1): 28-40, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363264

RESUMO

BACKGROUND: Functional connectivity in cortical networks is thought to be important for consciousness and can be disrupted during the anesthetized state. Recent work in adults has revealed dynamic connectivity patterns during stable general anesthesia, but whether similar connectivity state transitions occur in the developing brain remains undetermined. The hypothesis was that anesthetic-induced unconsciousness is associated with disruption of functional connectivity in the developing brain and that, as in adults, there are dynamic shifts in connectivity patterns during the stable maintenance phase of general anesthesia. METHODS: This was a preplanned analysis of a previously reported single-center, prospective, cross-sectional study of healthy (American Society of Anesthesiologists status I or II) children aged 8 to 16 yr undergoing surgery with general anesthesia (n = 50) at Michigan Medicine. Whole-scalp (16-channel), wireless electroencephalographic data were collected from the preoperative period through the recovery of consciousness. Functional connectivity was measured using a weighted phase lag index, and discrete connectivity states were classified using cluster analysis. RESULTS: Changes in functional connectivity were associated with anesthetic state transitions across multiple regions and frequency bands. An increase in prefrontal-frontal alpha (median [25th, 75th]; baseline, 0.070 [0.049, 0.101] vs. maintenance 0.474 [0.286, 0.606]; P < 0.001) and theta connectivity (0.038 [0.029, 0.048] vs. 0.399 [0.254, 0.488]; P < 0.001), and decrease in parietal-occipital alpha connectivity (0.171 [0.145, 0.243] vs. 0.089 [0.055, 0.132]; P < 0.001) were among those with the greatest effect size. Contrary to the hypothesis, connectivity patterns during the maintenance phase of general anesthesia were dominated by stable theta and alpha prefrontal-frontal and alpha frontal-parietal connectivity and exhibited high between-cluster similarity (r = 0.75 to 0.87). CONCLUSIONS: Changes in functional connectivity are associated with anesthetic state transitions but, unlike in adults, connectivity patterns are constrained during general anesthesia in late childhood and early adolescence.


Assuntos
Anestesia Geral , Córtex Cerebral , Adolescente , Adulto , Encéfalo , Criança , Estudos Transversais , Eletroencefalografia , Humanos , Estudos Prospectivos , Inconsciência/induzido quimicamente
15.
Anesthesiology ; 137(4): 434-445, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35960872

RESUMO

BACKGROUND: The relationship between intraoperative physiology and postoperative stroke is incompletely understood. Preliminary data suggest that either hypo- or hypercapnia coupled with reduced cerebrovascular inflow (e.g., due to hypotension) can lead to ischemia. This study tested the hypothesis that the combination of intraoperative hypotension and either hypo- or hypercarbia is associated with postoperative ischemic stroke. METHODS: We conducted a retrospective, case-control study via the Multicenter Perioperative Outcomes Group. Noncardiac, nonintracranial, and nonmajor vascular surgical cases (18 yr or older) were extracted from five major academic centers between January 2004 and December 2015. Ischemic stroke cases were identified via manual chart review and matched to controls (1:4). Time and reduction below key mean arterial blood pressure thresholds (less than 55 mmHg, less than 60 mmHg, less than 65 mmHg) and outside of specific end-tidal carbon dioxide thresholds (30 mmHg or less, 35 mmHg or less, 45 mmHg or greater) were calculated based on total area under the curve. The association between stroke and total area under the curve values was then tested while adjusting for relevant confounders. RESULTS: In total, 1,244,881 cases were analyzed. Among the cases that screened positive for stroke (n = 1,702), 126 were confirmed and successfully matched with 500 corresponding controls. Total area under the curve was significantly associated with stroke for all thresholds tested, with the strongest combination observed with mean arterial pressure less than 55 mmHg (adjusted odds ratio per 10 mmHg-min, 1.17 [95% CI, 1.10 to 1.23], P < 0.0001) and end-tidal carbon dioxide 45 mmHg or greater (adjusted odds ratio per 10 mmHg-min, 1.11 [95% CI, 1.10 to 1.11], P < 0.0001). There was no interaction effect observed between blood pressure and carbon dioxide. CONCLUSIONS: Intraoperative hypotension and carbon dioxide dysregulation may each independently increase postoperative stroke risk.


Assuntos
Hipotensão , AVC Isquêmico , Acidente Vascular Cerebral , Pressão Sanguínea/fisiologia , Dióxido de Carbono , Estudos de Casos e Controles , Humanos , Hipercapnia , Estudos Retrospectivos , Acidente Vascular Cerebral/epidemiologia
16.
Anesth Analg ; 134(6): 1126-1139, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34928887

RESUMO

BACKGROUND: Neurophysiologic complexity has been shown to decrease during states characterized by a depressed level of consciousness, such as sleep or anesthesia. Conversely, neurophysiologic complexity is increased during exposure to serotonergic psychedelics or subanesthetic doses of dissociative anesthetics. However, the neurochemical substrates underlying changes in neurophysiologic complexity are poorly characterized. Cortical acetylcholine appears to relate to cortical activation and changes in states of consciousness, but the relationship between cortical acetylcholine and complexity has not been formally studied. We addressed this gap by analyzing simultaneous changes in cortical acetylcholine (prefrontal and parietal) and neurophysiologic complexity before, during, and after subanesthetic ketamine (10 mg/kg/h) or 50% nitrous oxide. METHODS: Under isoflurane anesthesia, adult Sprague Dawley rats (n = 24, 12 male and 12 female) were implanted with stainless-steel electrodes across the cortex to record monopolar electroencephalogram (0.5-175 Hz; 30 channels) and guide canulae in prefrontal and parietal cortices for local microdialysis quantification of acetylcholine levels. One subgroup of these rats was instrumented with a chronic catheter in jugular vein for ketamine infusion (n = 12, 6 male and 6 female). The electroencephalographic data were analyzed to determine subanesthetic ketamine or nitrous oxide-induced changes in Lempel-Ziv complexity and directed frontoparietal connectivity. Changes in complexity and connectivity were analyzed for correlation with concurrent changes in prefrontal and parietal acetylcholine. RESULTS: Subanesthetic ketamine produced sustained increases in normalized Lempel-Ziv complexity (0.5-175 Hz; P < .001) and high gamma frontoparietal connectivity (125-175 Hz; P < .001). This was accompanied by progressive increases in prefrontal (104%; P < .001) and parietal (159%; P < .001) acetylcholine levels that peaked after 50 minutes of infusion. Nitrous oxide induction produced a transient increase in complexity (P < .05) and high gamma connectivity (P < .001), which was accompanied by increases (P < .001) in prefrontal (56%) and parietal (43%) acetylcholine levels. In contrast, the final 50 minutes of nitrous oxide administration were characterized by a decrease in prefrontal (38%; P < .001) and parietal (45%; P < .001) acetylcholine levels, reduced complexity (P < .001), and comparatively weaker frontoparietal high gamma connectivity (P < .001). Cortical acetylcholine and complexity were correlated with both subanesthetic ketamine (prefrontal: cluster-weighted marginal correlation [CW r] [144] = 0.42, P < .001; parietal: CW r[144] = 0.42, P < .001) and nitrous oxide (prefrontal: CW r[156] = 0.46, P < .001; parietal: CW r[156] = 0.56, P < .001) cohorts. CONCLUSIONS: These data bridge changes in cortical acetylcholine with concurrent changes in neurophysiologic complexity, frontoparietal connectivity, and the level of consciousness.


Assuntos
Ketamina , Acetilcolina , Anestésicos Dissociativos/toxicidade , Animais , Eletroencefalografia , Feminino , Masculino , Óxido Nitroso , Ratos , Ratos Sprague-Dawley
17.
Anesth Analg ; 134(6): 1140-1152, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35436248

RESUMO

BACKGROUND: Cholinergic stimulation of prefrontal cortex (PFC) can reverse anesthesia. Conversely, inactivation of PFC can delay emergence from anesthesia. PFC receives cholinergic projections from basal forebrain, which contains wake-promoting neurons. However, the role of basal forebrain cholinergic neurons in arousal from the anesthetized state requires refinement, and it is currently unknown whether the arousal-promoting effect of basal forebrain is mediated through PFC. To address these gaps in knowledge, we implemented a novel approach to the use of chemogenetic stimulation and tested the role of basal forebrain cholinergic neurons in behavioral arousal during sevoflurane anesthesia. Next, we investigated the effect of tetrodotoxin-mediated inactivation of PFC on behavioral arousal produced by electrical stimulation of basal forebrain during sevoflurane anesthesia. METHODS: Adult male and female transgenic rats (Long-Evans-Tg [ChAT-Cre]5.1 Deis; n = 22) were surgically prepared for expression of excitatory hM3D(Gq) receptors or mCherry in basal forebrain cholinergic neurons, and activation of these neurons by local delivery of compound 21, an agonist for hM3D(Gq) receptors. The transgenic rats were fitted with microdialysis probes for agonist delivery into basal forebrain and simultaneous prefrontal acetylcholine measurement. Adult male and female Sprague Dawley rats were surgically prepared for bilateral electrical stimulation of basal forebrain and tetrodotoxin infusion (156 µM and 500 nL) into PFC (n = 9) or bilateral electrical stimulation of piriform cortex (n = 9) as an anatomical control. All rats were implanted with electrodes to monitor the electroencephalogram. Heart and respiration rates were monitored using noninvasive sensors. A 6-point scale was used to score behavioral arousal (0 = no arousal and 5 = return of righting reflex). RESULTS: Compound 21 delivery into basal forebrain of rats with hM3D(Gq) receptors during sevoflurane anesthesia produced increases in arousal score (P < .001; confidence interval [CI], 1.80-4.35), heart rate (P < .001; CI, 36.19-85.32), respiration rate (P < .001; CI, 22.81-58.78), theta/delta ratio (P = .008; CI, 0.028-0.16), and prefrontal acetylcholine (P < .001; CI, 1.73-7.46). Electrical stimulation of basal forebrain also produced increases in arousal score (P < .001; CI, 1.85-4.08), heart rate (P = .018; CI, 9.38-98.04), respiration rate (P < .001; CI, 24.15-53.82), and theta/delta ratio (P = .020; CI, 0.019-0.22), which were attenuated by tetrodotoxin-mediated inactivation of PFC. CONCLUSIONS: This study validates the role of basal forebrain cholinergic neurons in behavioral arousal and demonstrates that the arousal-promoting effects of basal forebrain are mediated in part through PFC.


Assuntos
Anestesia , Prosencéfalo Basal , Acetilcolina/metabolismo , Animais , Nível de Alerta , Prosencéfalo Basal/metabolismo , Colinérgicos/farmacologia , Eletroencefalografia , Feminino , Imidazóis , Masculino , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Sevoflurano/farmacologia , Sulfonamidas , Tetrodotoxina/metabolismo , Tiofenos
18.
Pharmacol Rev ; 71(4): 450-466, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31471460

RESUMO

Despite continuous clinical use for more than 170 years, the mechanism of general anesthetics has not been completely characterized. In this review, we focus on the role of voltage-gated sodium channels in the sedative-hypnotic actions of halogenated ethers, describing the history of anesthetic mechanisms research, the basic neurobiology and pharmacology of voltage-gated sodium channels, and the evidence for a mechanistic interaction between halogenated ethers and sodium channels in the induction of unconsciousness. We conclude with a more integrative perspective of how voltage-gated sodium channels might provide a critical link between molecular actions of the halogenated ethers and the more distributed network-level effects associated with the anesthetized state across species.


Assuntos
Éteres/farmacologia , Inconsciência/induzido quimicamente , Inconsciência/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Éteres/química , Humanos , Hidrocarbonetos Halogenados/química , Hidrocarbonetos Halogenados/farmacologia , Hipnóticos e Sedativos/química , Hipnóticos e Sedativos/farmacologia
19.
J Clin Monit Comput ; 36(4): 1227-1232, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35113286

RESUMO

Controversy surrounds regional cerebral oximetry (rSO2) because extracranial contamination and unmeasured changes in cerebral arterial:venous ratio confound readings. Correlation of rSO2 with brain tissue oxygen (PbrO2), a "gold standard" for cerebral oxygenation, could help resolve this controversy but PbrO2 measurement is highly invasive. This was a prospective cohort study. The primary aim was to evaluate correlation between PbrO2 and rSO2 and the secondary aim was to investigate the relationship between changing ventilation regimens and measurement of PbrO2 and rSO2. Patients scheduled for elective removal of cerebral metastases were anesthetized with propofol and remifentanil, targeted to a BIS range 40-60. rSO2 was measured using the INVOS 5100B monitor and PbrO2 using the Licox brain monitoring system. The Licox probe was placed into an area of normal brain within the tumor excision corridor. FiO2 and minute ventilation were sequentially adjusted to achieve two set points: (1) FiO2 0.3 and paCO2 30 mmHg, (2) FiO2 1.0 and paCO2 40 mmHg. PbrO2 and rSO2 were recorded at each. Nine participants were included in the final analysis, which showed a positive Spearman's correlation (r = 0.50, p = 0.036) between PbrO2 and rSO2. From set point 1 to set point 2, PbrO2 increased from median 6.0, IQR 4.0-11.3 to median 22.5, IQR 9.8-43.6, p = 0.015; rSO2 increased from median 68.0, IQR 62.5-80.5 to median 83.0, IQR 74.0-90.0, p = 0.047. Correlation between PbrO2 and rSO2 is evident. Increasing FiO2 and PaCO2 results in significant increases in cerebral oxygenation measured by both monitors.


Assuntos
Circulação Cerebrovascular , Oximetria , Encéfalo , Humanos , Oximetria/métodos , Oxigênio , Estudos Prospectivos , Respiração
20.
J Neurosci ; 40(3): 605-618, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31776211

RESUMO

Leading neuroscientific theories posit a central role for the functional integration of cortical areas in conscious states. Considerable evidence supporting this hypothesis is based on network changes during anesthesia, but it is unclear whether these changes represent state-related (conscious vs unconscious) or drug-related (anesthetic vs no anesthetic) effects. We recently demonstrated that carbachol delivery to prefrontal cortex (PFC) restored wakefulness despite continuous administration of the general anesthetic sevoflurane. By contrast, carbachol delivery to parietal cortex, or noradrenaline delivery to either prefrontal or parietal cortices, failed to restore wakefulness. Thus, carbachol-induced reversal of sevoflurane anesthesia represents a unique state that combines wakefulness with clinically relevant anesthetic concentrations in the brain. To differentiate the state-related and drug-related associations of cortical connectivity and dynamics, we analyzed the electroencephalographic data gathered from adult male Sprague Dawley rats during the aforementioned experiments for changes in functional cortical gamma connectivity (25-155 Hz), slow oscillations (0.5-1 Hz), and complexity (<175 Hz). We show that higher gamma (85-155 Hz) connectivity is decreased (p ≤ 0.02) during sevoflurane anesthesia, an expected finding, but was not restored during wakefulness induced by carbachol delivery to PFC. Conversely, for rats in which wakefulness was not restored, the functional gamma connectivity remained reduced, but there was a significant decrease (p < 0.001) in the power of slow oscillations and increase (p < 0.001) in cortical complexity, which was similar to that observed during wakefulness induced after carbachol delivery to PFC. We conclude that the level of consciousness can be dissociated from cortical connectivity, oscillations, and dynamics.SIGNIFICANCE STATEMENT Numerous theories of consciousness suggest that functional connectivity across the cortex is characteristic of the conscious state and is reduced during anesthesia. However, it is unknown whether the observed changes are state-related (conscious vs unconscious) or drug-related (drug vs no drug). We used a novel rat model in which cholinergic stimulation of PFC produced wakefulness despite continuous exposure to a general anesthetic. We demonstrate that, as expected, general anesthesia reduces connectivity. Surprisingly, the connectivity remains suppressed despite pharmacologically induced wakefulness in the presence of anesthetic, with restoration occurring only after the anesthetic is discontinued. Thus, whether an animal exhibits wakefulness or not can be dissociated from cortical connectivity, prompting a reevaluation of the role of connectivity in level of consciousness.


Assuntos
Córtex Cerebral/fisiopatologia , Transtornos da Consciência/fisiopatologia , Eletroencefalografia/efeitos dos fármacos , Anestesia , Anestésicos Inalatórios/farmacologia , Animais , Carbacol/administração & dosagem , Carbacol/farmacologia , Córtex Cerebral/efeitos dos fármacos , Transtornos da Consciência/induzido quimicamente , Ritmo Gama/efeitos dos fármacos , Masculino , Agonistas Muscarínicos/farmacologia , Norepinefrina/farmacologia , Lobo Parietal/efeitos dos fármacos , Lobo Parietal/fisiopatologia , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Sprague-Dawley , Sevoflurano/farmacologia , Vigília/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA