RESUMO
Africa is not unique in its need for basic bioinformatics training for individuals from a diverse range of academic backgrounds. However, particular logistical challenges in Africa, most notably access to bioinformatics expertise and internet stability, must be addressed in order to meet this need on the continent. H3ABioNet (www.h3abionet.org), the Pan African Bioinformatics Network for H3Africa, has therefore developed an innovative, free-of-charge "Introduction to Bioinformatics" course, taking these challenges into account as part of its educational efforts to provide on-site training and develop local expertise inside its network. A multiple-delivery-mode learning model was selected for this 3-month course in order to increase access to (mostly) African, expert bioinformatics trainers. The content of the course was developed to include a range of fundamental bioinformatics topics at the introductory level. For the first iteration of the course (2016), classrooms with a total of 364 enrolled participants were hosted at 20 institutions across 10 African countries. To ensure that classroom success did not depend on stable internet, trainers pre-recorded their lectures, and classrooms downloaded and watched these locally during biweekly contact sessions. The trainers were available via video conferencing to take questions during contact sessions, as well as via online "question and discussion" forums outside of contact session time. This learning model, developed for a resource-limited setting, could easily be adapted to other settings.
Assuntos
Biologia Computacional/educação , Instrução por Computador/métodos , Internet , África , Biologia Computacional/organização & administração , Bases de Dados Factuais , Humanos , Interface Usuário-ComputadorRESUMO
The H3ABioNet pan-African bioinformatics network, which is funded to support the Human Heredity and Health in Africa (H3Africa) program, has developed node-assessment exercises to gauge the ability of its participating research and service groups to analyze typical genome-wide datasets being generated by H3Africa research groups. We describe a framework for the assessment of computational genomics analysis skills, which includes standard operating procedures, training and test datasets, and a process for administering the exercise. We present the experiences of 3 research groups that have taken the exercise and the impact on their ability to manage complex projects. Finally, we discuss the reasons why many H3ABioNet nodes have declined so far to participate and potential strategies to encourage them to do so.
Assuntos
População Negra/genética , Bases de Dados Genéticas , Genômica/métodos , Sistemas de Gerenciamento de Base de Dados , Países em Desenvolvimento , Humanos , Nigéria , África do SulRESUMO
There is growing evidence that comprehensive and harmonized metadata are fundamental for effective public data reusability. However, it is often challenging to extract accurate metadata from public repositories. Of particular concern is the metagenomic data related to African individuals, which often omit important information about the particular features of these populations. As part of a collaborative consortium, H3ABioNet, we created a web portal, namely the African Human Microbiome Portal (AHMP), exclusively dedicated to metadata related to African human microbiome samples. Metadata were collected from various public repositories prior to cleaning, curation and harmonization according to a pre-established guideline and using ontology terms. These metadata sets can be accessed at https://microbiome.h3abionet.org/. This web portal is open access and offers an interactive visualization of 14 889 records from 70 bioprojects associated with 72 peer reviewed research articles. It also offers the ability to download harmonized metadata according to the user's applied filters. The AHMP thereby supports metadata search and retrieve operations, facilitating, thus, access to relevant studies linked to the African Human microbiome. Database URL: https://microbiome.h3abionet.org/.
Assuntos
Metadados , Microbiota , Humanos , Metagenoma , Bases de Dados Factuais , Metagenômica , Microbiota/genéticaRESUMO
For the past 20 years, the recombination detection program (RDP) project has focused on the development of a fast, flexible, and easy to use Windows-based recombination analysis tool. Whereas previous versions of this tool have relied on considerable user-mediated verification of detected recombination events, the latest iteration, RDP5, is automated enough that it can be integrated within analysis pipelines and run without any user input. The main innovation enabling this degree of automation is the implementation of statistical tests to identify recombination signals that could be attributable to evolutionary processes other than recombination. The additional analysis time required for these tests has been offset by algorithmic improvements throughout the program such that, relative to RDP4, RDP5 will still run up to five times faster and be capable of analyzing alignments containing twice as many sequences (up to 5000) that are five times longer (up to 50 million sites). For users wanting to remove signals of recombination from their datasets before using them for downstream phylogenetics-based molecular evolution analyses, RDP5 can disassemble detected recombinant sequences into their constituent parts and output a variety of different recombination-free datasets in an array of different alignment formats. For users that are interested in exploring the recombination history of their datasets, all the manual verification, data management and data visualization components of RDP5 have been extensively updated to minimize the amount of time needed by users to individually verify and refine the program's interpretation of each of the individual recombination events that it detects.