Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(11): 6436-6443, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31059240

RESUMO

In the current study, a novel stimuli-responsive hybrid polymer with aluminum hydroxide colloids incorporated into a cationic copolymer of N-isopropylacrylamide and N-[3-(dimethylamino)propyl]methacrylamide was synthesized to enhance the settling and filtration performance of fine clay suspensions. The conformation of the synthesized hybrid copolymer was shown to respond to changes in both temperature and pH. Compared with a cationic copolymer of similar structure without aluminum hydroxide colloids, settling and filtration rates were significantly enhanced using the hybrid copolymer, which is attributed to the synergy between the inorganic aluminum hydroxide cores and organic copolymer. While the ideal treatment protocol for the hybrid polymer involved the addition of the polymer at room temperature, followed by heating to 45 °C for enhanced settling and dewatering, the synergistic effect between colloidal cores and polymer also allowed the hybrid polymer to perform well when added at temperatures above the LCST, demonstrating the robustness of the hybrid polymer to the process environment. The ideal treatment protocol resulted in an optimal adsorption of polymer on clays before inducing a coil-globule transition to form large and dense flocs, resulting in a more porous filter cake.


Assuntos
Coloides , Polímeros , Adsorção , Suspensões , Temperatura
2.
Electrophoresis ; 34(17): 2453-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23784786

RESUMO

Asymmetric pulsed field electrophoresis within crystalline arrays is used to generate angular separation of DNA molecules. Four regimes of the frequency response are observed, a low frequency rise in angular separation, a plateau, a subsequent decline, and a second plateau at higher frequencies. It is shown that the frequency response for different sized DNA is governed by the relation between pulse time and the reorientation time of DNA molecules. The decline in angular separation at higher frequencies has not previously been analyzed. Real-time videos of single DNA molecules migrating under high frequency-pulsed electric field show the molecules no longer follow the head to tail switching, ratchet mechanism seen at lower frequencies. Once the pulse period is shorter than the reorientation time, the migration mechanism changes significantly. The molecule reptates along the average direction of the two electric fields, which reduces the angular separation. A freely jointed chain model of DNA is developed where the porous structure is represented with a hexagonal array of obstacles. The model qualitatively predicts the variation of DNA angular separation with respect to frequency.


Assuntos
DNA/química , Eletroforese em Gel de Campo Pulsado/métodos , Técnicas Analíticas Microfluídicas/métodos , Coloides/química , Simulação por Computador , DNA/isolamento & purificação , Eletricidade , Eletroforese em Gel de Campo Pulsado/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação
3.
Langmuir ; 27(21): 12996-3007, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21961691

RESUMO

To fundamentally understand the electrokinetic behavior of clay minerals, it is necessary to study the anisotropic surface charge properties of clay surfaces. In this study, two 2:1 layer natural minerals, talc and muscovite, were chosen as representatives of magnesium and aluminum phyllosilicate minerals, respectively. The molecularly smooth basal planes of both platy minerals were obtained by cleavage along the basal planes, while suitable edge surfaces were prepared by an ultramicrotome cutting technique. Silicon nitride atomic force microscopy tip was used as a probe to study the interaction forces between the tip and clay basal/edge surfaces in aqueous solutions of various pH values. The measured interaction force profiles between the tip and clay basal/edge surfaces were fitted with the classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, which allows direct determination of electrical surface potential of talc and muscovite surfaces. The surface potential of muscovite basal planes was found to be significantly more negative than the basal plane of talc, both being pH insensitive. In contrast, the surface potential of edge surfaces was highly pH-dependent, exhibiting a point of zero charge (PZC) at pH 7.5 and 8.1 for edges of muscovite and talc, respectively. The observed differences in surface potential of basal planes and edge surfaces for both talc and muscovite are closely related to their crystal structure and ionization characteristics. The protonation reactivity and the contribution of each surface group to the surface charging behavior are modeled using their protonation constants.

4.
Langmuir ; 26(5): 3050-7, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20175568

RESUMO

In our previous study, ethylcellulose (EC), an effective, nontoxic, and biodegradable natural polymer, was found effective in dewatering water-in-diluted bitumen emulsions. In this study, the demulsification mechanism of water-in-diluted bitumen emulsions by EC is investigated. In situ experiments using a micropipet apparatus provided direct evidence on both flocculation and coalescence of water droplets in diluted bitumen by EC. The addition of EC was found to decrease naphtha-diluted bitumen-water interfacial tension significantly. At the molecular level, AFM imaging revealed disruption of the continuous interfacial films formed from surface-active components of bitumen by EC. Our study clearly indicates that the demulsification by EC is through both flocculation and coalescence of water droplets, attained by competitive adsorption of EC at the oil-water interface and disruption of the original protective interfacial films formed from the surface-active components of bitumen.


Assuntos
Celulose/análogos & derivados , Celulose/química , Hidrocarbonetos/química , Fenômenos Mecânicos , Água/química , Emulsões , Microscopia de Força Atômica
5.
Adv Colloid Interface Sci ; 134-135: 279-321, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17599797

RESUMO

Electrokinetic Phenomena in concentrated disperse and colloid systems have been studied employing Spherical Cell Approach for over three decades. The critical review of the advances in this area, which is conducted in the present paper, demonstrates a number of contradictions between the results reported by different authors. These contradictions are largely associated with imposition of boundary conditions at the outer boundary of the representative Spherical Cell. In order to establish a correct version of the Spherical Cell Approach, in the present paper, the theory of Electrokinetic Phenomena in concentrated suspensions is revisited by primarily focusing on the boundary conditions employed at the Spherical Cell outer boundary. To this end, a general mathematical problem is formulated for addressing the behavior of a planar layer of a macroscopically homogeneous disperse system under simultaneous influence of the pressure difference, gravitation and applied electric fields. On the basis of the general problem formulation, we present strict definitions of the kinetic coefficients which describe the system behavior. Making use of such definitions, some general relationships are rederived for the kinetic coefficients, namely, the Smoluchowski asymptotic expressions and the Onsager irreversible thermodynamic relationships. The general problem is reformulated for describing the electric, hydrodynamic and ion concentration fields inside the representative Spherical Cell. Using an original approach, a complete set of the boundary conditions is derived by employing the only assumption: the average over the disperse system volume is equal to the average over a representative Spherical Cell volume. A general method for predicting the kinetic coefficients is developed by employing the solution of the formulated problem. The developed method is combined with the method of small perturbation parameter using the normalized zeta potential. Final expressions for the kinetic coefficients are obtained while accounting for the terms proportional to zeta potential. The predictions are compared with results of other publications. On this basis, conclusions are made about the validity of different models proposed in the literature.


Assuntos
Eletro-Osmose , Modelos Químicos , Coloides , Eletroforese , Cinética , Propriedades de Superfície
6.
J Phys Chem B ; 110(39): 19726-34, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17004843

RESUMO

In the present paper, the spherical cell approach is employed for addressing the effective viscosity of suspensions of spherical particles. The proposed derivation is based on the only assumption which constitutes the essence of the spherical cell approach: a representative part of the suspension is a spherical cell which contains a particle surrounded by the continuous phase. In contrast with the previous studies on this topic, no additional assumptions are used in the present analysis. The general method of derivation and the final result, which represents the effective viscosity as a function of the solid-phase volume fraction, are compared with earlier studies where the spherical cell approach was applied for describing the effective viscosity.


Assuntos
Físico-Química/métodos , Biofísica/métodos , Eletroquímica/métodos , Modelos Químicos , Modelos Estatísticos , Modelos Teóricos , Termodinâmica , Viscosidade , Água/química
7.
J Colloid Interface Sci ; 293(1): 1-15, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16023132

RESUMO

A trajectory analysis of particles near a micropatterned charged substrate under radial impinging jet flow conditions is presented to investigate the effect of surface charge heterogeneity on particle trajectory and deposition efficiency. The surface charge heterogeneity is modeled as concentric bands of specified width and pitch having positive and negative surface potentials. The flow distribution is obtained using finite element analysis of the governing Navier-Stokes equations. The particle trajectory analysis takes into consideration the hydrodynamic interactions, gravity, van der Waals and electrostatic double layer interactions. The presence of surface charge heterogeneity on the substrate gives rise to an oscillating particle trajectory near the collector surface due to repulsive and attractive forces. As a result of the coupled effects of hydrodynamic and colloidal forces, the particle trajectories and deposition efficiencies are increasingly affected by surface charge heterogeneity as one moves radially away from the stagnation point. The results indicate that it is possible to render collectors with up to 50% favorable surface fraction completely unfavorable by modifying the ratio of the radial to normal fluid velocity. Utilizing the real favorable area fraction of the collector, the patch model expression for calculating the deposition efficiency is modified for impinging jet flow geometry.

8.
J Colloid Interface Sci ; 287(1): 338-50, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15914183

RESUMO

A novel separation technique based on simultaneous application of AC dielectrophoresis and preferential transport through a semipermeable hydrophilic membrane is proposed for separation of small amounts of emulsified water droplets from a water-in-oil emulsion. Embedding an array of parallel microelectrodes on a membrane matrix, followed by application of an AC potential to these electrodes, can result in capturing the water droplets onto the membranes from the emulsion during a crossflow filtration process. The present paper describes the theoretical principles underlying such a process, and describes a simple mathematical framework based on trajectory analysis for assessing the separation efficiency of such a technique. The results indicate that superimposition of an AC dielectrophoretic field can significantly enhance the preferential transport of the emulsified water through the membrane in a crossflow filtration device. This can lead to a highly efficient continuous separation process for dilute emulsions.

9.
J Colloid Interface Sci ; 285(2): 599-608, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15837477

RESUMO

A photographic technique coupled with image analysis was used to measure the size and fractal dimension of asphaltene aggregates formed in toluene-heptane solvent mixtures. First, asphaltene aggregates were examined in a Couette device and the fractal-like aggregate structures were quantified using boundary fractal dimension. The evolution of the floc structure with time was monitored. The relative rates of shear-induced aggregation and fragmentation/restructuring determine the steady-state floc structure. The average floc structure became more compact or more organized as the floc size distribution attained steady state. Moreover, the higher the shear rate is, the more compact the floc structure is at steady state. Second, the fractal dimensions of asphaltene aggregates were also determined in a free-settling test. The experimentally determined terminal settling velocities and characteristic lengths of the aggregates were utilized to estimate the 2D and 3D fractal dimensions. The size-density fractal dimension (D(3)) of the asphaltene aggregates was estimated to be in the range from 1.06 to 1.41. This relatively low fractal dimension suggests that the asphaltene aggregates are highly porous and very tenuous. The aggregates have a structure with extremely low space-filling capacity.

10.
J Colloid Interface Sci ; 283(1): 5-17, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15694419

RESUMO

In the Gibbs adsorption equation, the application of solvent activity for the calculation of the surface/interfacial excess is proposed for nonideal or associating or pseudocomponents such as asphaltenes. For the aforementioned systems, only the mass-based phenomenological interfacial excess can be determined based on interfacial tension versus activity data. The use of the mole fraction is compared to the use of the activity when the adsorbed amount of associating asphaltenes is calculated at a water/toluene interface. Langmuir-type isotherms describe the adsorption of asphaltenes at toluene/water interfaces. Asphaltenes were treated to remove the resins and natural surfactants using cyclic precipitation and dissolution of asphaltenes at a fixed aliphatic/aromatic ratio. Different fractions of asphaltenes were obtained by changing the aliphatic/aromatic ratio of the precipitating solvent. The limiting molar masses of asphaltenes measured by vapor pressure osmometry are different for fractions precipitated at different heptane to toluene ratios. The mass-based adsorbed amounts at the water/toluene interface, at a 0.1 asphaltene-to-toluene mass-ratio, varied in the range of 0.8-2.8 mg/m(2), depending on the molar mass of asphaltenes.

12.
Adv Colloid Interface Sci ; 217: 31-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25595420

RESUMO

The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 µm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model. The potential to use the design principles of the ITFDA for fundamental and developmental research is demonstrated.


Assuntos
Ar , Hidrodinâmica , Modelos Químicos , Tamanho da Partícula , Propriedades de Superfície
13.
J Colloid Interface Sci ; 257(2): 299-309, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16256484

RESUMO

Addition of heptane to a sodium naphthenates/toluene/water system at 25 degrees C reduces the lamellar liquid-crystal phase range and increases the microemulsion phase range. Both of these effects result in the extension of the composition range where emulsions have low stability. This effect is even stronger at 40 degrees C. Heptane addition also results in the formation of very stable emulsions within the overlapping phase-existence ranges of aqueous (L1) and organic (L2) phases. Stable non-birefringent gel observed in equilibrium with L1 and L2 phases contains only a small percentage of water and sodium naphthenates. The swelling behavior of an unstable gel, an emulsion previously compressed by centrifugation, appears to be due to a stepwise thickening of the thin liquid films between the droplets.

14.
J Colloid Interface Sci ; 253(2): 427-34, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16290874

RESUMO

Equilibrium liquid crystal (LC) layer on an interface between crude oils and water was observed at high pH. This layer is composed mainly of sodium naphthenates produced in situ at the water/oil interface. Transient LC layer was also evolved at the interface of aqueous phase of sodium hydroxide solutions and oleic phase of naphthenic acid (NA) solutions as result of a chemical reaction between NaOH and NA. This chemical reaction causes transport process resulting in a disturbance of the interface. Optical observation of this interface disturbance reviled that the interface covered with LC shows considerably lower flexibility as compared to LC free interface. The LC layer eventually dissolves in the water phase at low oil-to-water ratio, while at high oil-to-water ratio it can form an equilibrium phase, which spreads spontaneously at the oil-water interface.

15.
J Colloid Interface Sci ; 264(1): 128-40, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12885529

RESUMO

Asphaltenes are present in heavy oils and bitumen. They are a mixture of hydrocarbons having complex structures of polyaromatic rings and short side chains. In general, the high-molecular-weight asphaltene is the most aromatic fraction with the highest number of side chains and the low-molecular-weight asphaltene contains the lowest number of side chains, while the number of side chains of the whole asphaltene fraction lies in between. In this study, asphaltenes were extracted and/or fractionated from Athabasca oil sand bitumen. Subfractions of high and low molecular weight and the whole asphaltenes were characterized using a Langmuir trough and complementary techniques such as VPO, FTIR, AFM, and contact angle measurements. At an air-water interface, amphiphilic asphaltene molecules can form a monolayer. Various fractions (high, low, and whole) of the asphaltene molecules behave similarly at the air-water interface, characterized by close resemblance of their surface pressure-area, hysteresis, and relaxation isotherms. The high-molecular-weight asphaltene is the most expanded fraction, while the low-molecular-weight asphaltene fraction is the most condensed, with the whole asphaltene lying in between. At the air-water interface a monolayer of the low-molecular-weight asphaltene relaxes at a faster rate than one of the high-molecular-weight asphaltene.


Assuntos
Hidrocarbonetos Aromáticos/química , Ar , Alberta , Microscopia de Força Atômica , Petróleo , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água
16.
J Colloid Interface Sci ; 259(1): 81-8, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12651135

RESUMO

The sliding velocity of glass beads on a spherical surface, made either of an air bubble or of a glass sphere held stationary, is measured to investigate the effect of surface mobility on the particle sliding velocity. The sliding process is recorded with a digital camera and analyzed frame by frame. The sliding glass bead was found to accelerate with increasing angular position on the collector's surface. It reaches a maximum velocity at an angular position of about 100 degrees and then, under certain conditions, the glass bead leaves the surface of the collector. The sliding velocity of the glass bead depends strongly on the surface mobility of a bubble, decreasing with decreasing surface mobility. By a mobile surface we mean one which cannot set up resistive forces to an applied stress on the surface. The sliding velocity on a rigid surface, such as a glass sphere, is much lower than that on a mobile bubble surface. The sliding velocity can be described through a modified Stokes equation. A numerical factor in the modified Stokes equation is determined by fitting the experimental data and is found to increase with decreasing surface mobility. Hydrophobic glass beads sliding on a hydrophobic glass sphere were found to stick at the point of impact without sliding if the initial angular position of the impact is less than some specific angle, which is defined as the critical sticking angle. The sticking of the glass beads can be attributed to the capillary contracting force created by the formation of a cavity due to spontaneous receding of the nonwetting liquid from the contact zone. The relationship between the critical sticking angle and the particle size is established based on the Yushchenko [J. Colloid Interface Sci. 96 (1983) 307] analysis.

17.
J Colloid Interface Sci ; 274(2): 625-30, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15144838

RESUMO

A change of oil/water interfacial tension in the presence of cationic or anionic surfactants in an organic phase was observed due to the addition of charged fine solids in the aqueous phase. The charged fine solids in the aqueous phase adsorb surfactants diffused from the oil phase, thereby causing an increase in the bulk equilibrium surfactant concentration in the aqueous phase, governed by the Stern-Grahame equation. Consequently, surfactant adsorption at the oil-water interface increases, which was demonstrated from the measured reduction of the oil-water interfacial tension. The increased surfactant partition in the aqueous phase in the presence of the charged particles was confirmed by the measured decrease in the surface tension for the collected aqueous solution after solids removal, as compared with the cases without solids addition.

18.
J Colloid Interface Sci ; 404: 183-91, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23706408

RESUMO

Smooth basal plane and edge surfaces of two platy phyllosilicate minerals (muscovite and talc) were prepared successfully to allow accurate colloidal force measurement using an atomic force microscope (AFM), which allowed us to probe independently interactions of divalent cations with phyllosilicate basal planes and edge surfaces. The Stern potential of basal planes and edge surfaces was obtained by fitting the measured force profiles with the classical DLVO theory. The fitted Stern potential of the muscovite basal plane became less negative with increasing Ca(2+) or Mg(2+) concentration but did not reverse its sign even at Ca(2+) or Mg(2+) concentrations up to 5 mM. In contrast, the Stern potential of the muscovite edge surface reversed at Ca(2+) or Mg(2+) concentrations as low as 0.1 mM. The Stern potential of the talc basal plane became less negative with 0.1 mM Ca(2+) addition and nearly zero with 1 mM Ca(2+) addition. The Stern potential of talc edge surface became reversed with 0.1 mM Ca(2+) or 1 mM Mg(2+) addition, showing not only a different binding mechanism of talc basal planes and edge surfaces with Ca(2+) and Mg(2+), but also different binding mechanism between Ca(2+) and Mg(2+) ions with basal planes and edge surfaces.


Assuntos
Silicatos de Alumínio/química , Cálcio/química , Cátions Bivalentes/química , Magnésio/química , Talco/química , Propriedades de Superfície
19.
Lab Chip ; 12(1): 146-52, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22105746

RESUMO

The role of order within a porous separation matrix on the separation efficiency of DNA was studied systematically. DNA separation was based on a ratchet mechanism. Monodisperse colloidal suspensions of nanoparticles were used to fabricate highly ordered separation media with a hexagonal close-packed structure. Doping with a second particle size yielded structures with different degrees of disorder, depending upon the volume fraction of each particle size. Radial distribution functions and orientational order parameters were calculated from electron micrographs to characterize the scale of disorder. The peak separation distance, band broadening, and separation resolution of DNA molecules was quantified for each structure. DNA separation parameters using pulsed fields and the ratchet effect showed a strong dependence on order within the porous nanoparticle array. Ordered structures gave large separation distances, smaller band broadening and better resolution than highly disordered, nearly random, porous structures. The effect dominated these three parameters when compared to the effect of pore size. However, the effect of order on separation performance was not monotonic. A small, but statistically significant improvement was seen in structures with short range order compared to those with long range order.


Assuntos
DNA/isolamento & purificação , Eletroforese em Gel de Campo Pulsado/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nanoestruturas/química , Coloides/química , Cristalização , Eletroforese em Gel de Campo Pulsado/métodos , Técnicas Analíticas Microfluídicas/métodos , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Porosidade
20.
J Colloid Interface Sci ; 355(1): 96-105, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21208625

RESUMO

Flocculation is commonly used in various solid-liquid separation processes in chemical and mineral industries to separate desired products or to treat waste streams. This paper presents an experimental technique to study flocculation processes in laminar tube flow. This approach allows for more realistic estimation of the shear rate to which an aggregate is exposed, as compared to more complicated shear fields (e.g. stirred tanks). A direct sampling method is used to minimize the effect of sampling on the aggregate structure. A combination of aggregate settling velocity and image analysis was used to quantify the structure of the aggregate. Aggregate size, density, and fractal dimension were found to be the most important aggregate structural parameters. The two methods used to determine aggregate fractal dimension were in good agreement. The effects of advective flow through an aggregate's porous structure and transition-regime drag coefficient on the evaluation of aggregate density were considered. The technique was applied to investigate the flocculation kinetics and the evolution of the aggregate structure of kaolin particles with an anionic flocculant under conditions similar to those of oil sands fine tailings. Aggregates were formed using a well controlled two-stage aggregation process. Detailed statistical analysis was performed to investigate the establishment of dynamic equilibrium condition in terms of aggregate size and density evolution. An equilibrium steady state condition was obtained within 90 s of the start of flocculation; after which no further change in aggregate structure was observed. Although longer flocculation times inside the shear field could conceivably cause aggregate structure conformation, statistical analysis indicated that this did not occur for the studied conditions. The results show that the technique and experimental conditions employed here produce aggregates having a well-defined, reproducible structure.


Assuntos
Coloides/química , Caulim/química , Ânions/química , Floculação , Fractais , Cinética , Computação Matemática , Tamanho da Partícula , Porosidade , Reprodutibilidade dos Testes , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA