Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 30(49): 14745-56, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25409423

RESUMO

The importance of electrostatics on microgel adsorption at a liquid interface is studied, as well as its consequence on emulsion stabilization. In this work, poly(N-isopropylacrylamide) (pNIPAM) microgels bearing different numbers of charges and various distribution profiles are studied, both in solution and at the oil-water interface of emulsion drops. Charged microgels are compared to neutral ones, and electrostatic interactions are screened by adding salt to the aqueous solution. In solution, electrostatics has a significant impact on microgel swelling, as induced by the osmotic pressure exerted by mobile counterions in the gel network. At the interface of drops, microgels pack in a hexagonal array, whose lattice parameter is independent of the number of charges and range of electrostatic interactions. Microgel morphology and packing are ruled only by the adsorption of the pNIPAM chain at the interface. Conversely, decreasing the charge density of microgels by the protonation of the carboxylic groups leads to unstable emulsions, possibly as a result of the impact of hydrogen bonding on microgel deformability.

2.
Soft Matter ; 10(36): 6963-74, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24825608

RESUMO

The aim of this paper is to determine how microgels adsorb at a model oil-water interface and how they adapt their conformation to compression, which gives rise to surface elasticity depending on the microgel packing. The structure of the film is determined by the Langmuir films approach (forced compression) and compared to spontaneous adsorption using the pendant drop method. The behaviour of microgels differs significantly from that of non-deformable particles but resembles that of linear polymers or proteins. We also correlate the properties of microgels spontaneously adsorbed at model interfaces to their forced adsorption during emulsification. Finally we propose a route to easily control a posteriori the microgel packing at the surface of droplets and the flow properties of emulsions stabilised by the microgels.

3.
Langmuir ; 29(5): 1551-61, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23286375

RESUMO

In an attempt to fabricate low index metamaterials by a bottom-up approach, meta-atoms constituted of silica-coated silver nanoparticles are assembled by a Langmuir-Schaefer technique into thin films of large area and well-controlled thickness. The silica shells ensure a constant distance between the silver cores, hence providing a constant coupling of the localized surface plasmon resonance (LSPR) of the nanoparticles in the assembled composite material. The optical response is studied by normal angle spectral reflectance measurements and by variable angle spectroscopic ellipsometry. The normal incidence data are described well in the framework of a single effective Lorentz oscillator model. The resonance of the assembled material is blue-shifted and shows no significant broadening with respect to the absorption band of the individual nanoparticles. The observation of these two effects is enabled by the core-shell structure of the meta-atoms that prevents aggregation of the metallic cores. The ellipsometry study confirms the general behavior and reveals the natural birefringence of the few-layer materials. The amplitude of the observed resonance is weaker than expected from the Maxwell-Garnett mixing rule. This well-characterized system may constitute a good model for numerical simulations.

4.
J Colloid Interface Sci ; 279(2): 471-8, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15464813

RESUMO

Monodisperse silica spheres with diameters of 220-1100 nm were prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in an alcoholic medium in the presence of water and ammonia. By grafting vinyl or amino groups onto silica surfaces using the coupling agents allyltrimethoxysilane and aminopropyltriethoxysilane, respectively, amphiphilic silica spheres were obtained and could be organized to form a stable Langmuir film at the air-water interface. The controlled transfer of this monolayer of particles onto a solid substrate gave us the ability to build three-dimensional regular crystals with a well-defined thickness and organization. These colloidal crystals diffract light in the UV, the visible, and the near-infrared (NIR) spectral regions, depending on the size of the silica spheres and according to Bragg's law. The depth of the photonic stop band can be tuned by varying the number of deposited layers of particles. By using successive depositions, we could prepare multilayered films with silica spheres of different sizes. The thickness of each slab in the binary crystals can be tuned at the layer level, while the crystalline order of each layer is well preserved.


Assuntos
Coloides/química , Dióxido de Silício/química , Coloides/síntese química , Cristalização , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Propriedades de Superfície
5.
Adv Mater ; 26(2): 324-30, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24136734

RESUMO

Self-assembled plasmonic metamaterials are fabricated from silver nanoparticles covered with a silica shell. These metamaterials demonstrate topological darkness or selective suppression of reflection connected to global properties of the Fresnel coefficients. The optical properties of the studied structures are in good agreement with effective medium theory. The results suggest a practical way of achieving high phase sensitivity in plasmonic metamaterials.

6.
Langmuir ; 22(12): 5469-75, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16732679

RESUMO

The synthesis of novel meso-/macroporous SiO2 monoliths by combining a nano-building-blocks-based approach with the confined geometry of a tailored air-liquid foam structure is described. The resulting macrostructure in which ordered close-packed colloidal silica nanoparticles constitute the monolith's scaffolds very closely resembles the tailored periodic air-liquid foam template. The void spaces between adjacent particles create textural mesoporosity; therefore, the as-prepared silica networks are characterized by hierarchical porosity at the macroscopic and mesoscopic length scales. The fine-tuning of both the liquid foam's fraction and the bubble size allows a rational design over the macroscopic cell morphologies (shape, Plateau border's length, and width). Striking results of this approach are the weak shrinkage of the as-synthesized opal-like scaffolds during the thermally induced sintering process and, in contrast with previous studies, the formation of closed-cell structures. Particle organization and the foam film surface roughness are investigated by atomic force microscopy (AFM), showing the influence of the liquid flow, within the foams' Plateau borders and films, on the final assemblies.

7.
Langmuir ; 21(16): 7380-9, 2005 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16042469

RESUMO

Star diblock copolymers containing polystyrene (PS) and poly(ethylene oxide) (PEO) were investigated as surface films at the air/water interface. Both classic and dendritic-like stars were prepared containing either a PS core and PEO corona or the reverse. The investigated polymers, consisting of systematic variations in architectures and compositions, were spread at the air/water interface, generating reproducible surface pressure-area isotherms. All of the films could be compressed to higher pressures than would be possible for pure PEO. For stars containing 20% or more PEO, three distinct regions appeared. At higher areas, the PEO absorbs in pancakelike structures at the interface with PS globules sitting atop. Upon compression, a pseudoplateau transition region appeared. Both regions strongly depended on PEO composition. The pancake area and the pseudoplateau width and pressure increased in a linear fashion with an increasing amount of PEO. In addition, minimum limits of PEO chain length and mass percentage were determined for observing a pseudoplateau. At small areas, the film proved less compressible, producing a rigid film in which PS dominated. Here, the film area increased with both molecular weight and the amount of PS. Comparison with pure linear PS showed the stars spread more, occupying greater areas. Among the stars, the PEO-core stars were more compact while the PS-core stars spread more. The influence of architecture in terms of the core/corona polymers and branching were also examined. The effects of architecture were subtle, proving less important than PEO chain length or mass percentage.

8.
Langmuir ; 21(8): 3424-31, 2005 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-15807583

RESUMO

A series of three-arm star block copolymers were examined using atomic force microscopy (AFM). These stars consisted of a polystyrene core composed of ca. 111 styrene units/branch with poly(ethylene oxide) (PEO) chains at the star periphery. Each star contained different amounts of PEO, varying from 107 to 415 ethylene oxide units/branch. The stars were spread as thin films at the air/water interface on a Langmuir trough and transferred onto mica at various surface pressures. Circular domains representing 2D micelle-like aggregated molecules were observed at low pressures. Upon further compression, these domains underwent additional aggregation in a systematic manner, including micellar chaining. At this point, domain area and the number of molecules/domain increased with increasing pressure. In addition, it was found that longer PEO chains led to greater intermolecular separation and less aggregation. These AFM results correspond to attributes seen in the surface pressure-area isotherms of the stars. In addition, they demonstrate the viability of AFM as a quantitative characterization technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA