Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 43(7): 1722-1739, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32329086

RESUMO

Increasing evidences highlight the importance of DEAD-box RNA helicases in plant development and stress responses. In a previous study, we characterized the tomato res mutant (restored cell structure by salinity), showing chlorosis and development alterations that reverted under salt-stress conditions. Map-based cloning demonstrates that RES gene encodes SlDEAD39, a chloroplast-targeted DEAD-box RNA helicase. Constitutive expression of SlDEAD39 complements the res mutation, while the silencing lines had a similar phenotype than res mutant, which is also reverted under salinity. Functional analysis of res mutant proved SlDEAD39 is involved in the in vivo processing of the chloroplast, 23S rRNA, at the hidden break-B site, a feature also supported by in vitro binding experiments of the protein. In addition, our results show that other genes coding for chloroplast-targeted DEAD-box proteins are induced by salt-stress, which might explain the rescue of the res mutant phenotype. Interestingly, salinity restored the phenotype of res adult plants by increasing their sugar content and fruit yield. Together, these results propose an unprecedented role of a DEAD-box RNA helicase in regulating plant development and stress response through the proper ribosome and chloroplast functioning, which, in turn, represents a potential target to improve salt tolerance in tomato crops.


Assuntos
RNA Helicases DEAD-box/fisiologia , Proteínas de Plantas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Northern Blotting , Cloroplastos/metabolismo , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Estresse Salino
2.
Front Plant Sci ; 11: 587754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304365

RESUMO

Identification of tomato varieties able to exhibit higher accumulation of primary and secondary metabolites in their fruits is currently a main objective in tomato breeding. One tool to improve fruit quality is to cultivate the plants under salt stress, although improvement of fruit quality is generally accompanied by productivity losses. However, it is very interesting to implement strategies aiming at enhancing fruit quality of tomato by means of growing plants in moderate salt stress that allows for a sustainable fruit yield. The traditional tomato varieties adapted to the Mediterranean environmental constraints may be very attractive plant materials to achieve this goal, given the wide range of fruit quality traits because of their genetic diversity. Here, agronomic responses and fruit quality traits, including primary and secondary metabolites, were analyzed in fruits of two Mediterranean traditional tomato varieties named "Tomate Pimiento" ("TP") and "Muchamiel Aperado" ("MA") because of the pepper and pear shape of their fruits, using as reference the commercial cultivar "Moneymaker" ("MM"). Plants were grown without salt (control) and with moderate salt stress (50 mM NaCl), which did not affect fruit yield in any variety. "TP" is of great interest because of its high soluble solids content (SSC) in control, which is even higher in salt, whereas "MA" is very attractive because of its high Brix yield index (SSC × fruit yield), used as overall fruit quality measure. Similitude between both traditional varieties were found for primary metabolism, as they significantly increased sucrose contents compared with "MM" in red ripe fruits from plants in control and, especially, salt stress conditions. The most remarkable difference was the high constitutive levels of total amino acids in "TP" fruits, including the three major free amino acids found in tomato fruit, GABA, glutamate, and glutamine, which even increased under salinity. Regarding secondary metabolites, the most interesting change induced by salinity was the increase in α-tocopherol found in red ripe fruits of both "TP" and "MA." These results reveal the interest of traditional varieties as sources of genetic variation in breeding because of their improvement of tomato fruit quality without production losses under moderate salt stress.

3.
Front Plant Sci ; 9: 1778, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555505

RESUMO

Salt stress generally induces important negative effects on tomato (Solanum lycopersicum) productivity but it may also cause a positive effect improving fruit quality, one of the greatest challenges in nowadays agriculture. Because of the genetic erosion of this horticultural species, the recovery of locally adapted landraces could play a very important role in avoiding, at least partially, production losses and simultaneously improving fruit quality. Two tomato landraces endemic of the Spanish Southeast area, characterized by the harsh climatic conditions of the Mediterranean basin, have been selected: Negro Yeste (NY) characterized by its dark-red colored fruits and Verdal (V), which fruits did not achieve the characteristic red color at ripening. Here the agronomic, physiological, and metabolic responses of these landraces were compared with the reference tomato commercial cv. Moneymaker (MM), in plants grown without salt (control) and with salt stress (100 mM NaCl) for 70 days. The higher salt tolerance of both landraces was mainly reflected in the fruit number, as NY only reduced the fruit number in salt stress by 20% whereas in MM it was reduced till 43%, and in V the fruit number even showed an increase of 33% with salt stress. An important fruit quality parameter is soluble solids content, which increases induced by salinity were significantly higher in both landraces (60 and 78% in NY and V, respectively) compared with MM (34%). Although both landraces showed a similar response in relation to the high chlorophyll accumulation detected in their fruits, the fruit metabolic profiles were very different. Increased carotenoids levels were found in NY fruits, especially lycopene in ripe fruit, and this characteristic was observed in both control and salt stress. Contrarily, the carotenoid biosynthesis pathway was disrupted in V ripe fruits, but other metabolites, such as Ca2+, mannose, formate, and glutamate were accumulated. These results highlight the potential of tomato landraces to improve nutritional fruit quality and maintain fruit yield stability under salt stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA