Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 39(12): 1847-1858, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27503483

RESUMO

Consistent and robust manufacturing is essential for the translation of cell therapies, and the utilisation automation throughout the manufacturing process may allow for improvements in quality control, scalability, reproducibility and economics of the process. The aim of this study was to measure and establish the comparability between alternative process steps for the culture of hiPSCs. Consequently, the effects of manual centrifugation and automated non-centrifugation process steps, performed using TAP Biosystems' CompacT SelecT automated cell culture platform, upon the culture of a human induced pluripotent stem cell (hiPSC) line (VAX001024c07) were compared. This study, has demonstrated that comparable morphologies and cell diameters were observed in hiPSCs cultured using either manual or automated process steps. However, non-centrifugation hiPSC populations exhibited greater cell yields, greater aggregate rates, increased pluripotency marker expression, and decreased differentiation marker expression compared to centrifugation hiPSCs. A trend for decreased variability in cell yield was also observed after the utilisation of the automated process step. This study also highlights the detrimental effect of the cryopreservation and thawing processes upon the growth and characteristics of hiPSC cultures, and demonstrates that automated hiPSC manufacturing protocols can be successfully transferred between independent laboratories.


Assuntos
Automação/instrumentação , Automação/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Antígenos de Diferenciação/biossíntese , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Projetos Piloto
2.
iScience ; 27(7): 110242, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39040067

RESUMO

Mutations in the DMD gene lead to Duchenne muscular dystrophy (DMD), a severe neuromuscular disorder affecting young boys as they acquire motor functions. DMD is typically diagnosed at 2-4 years of age, but the absence of dystrophin has negative impacts on skeletal muscles before overt symptoms appear in patients, which poses a serious challenge in current standards of care. Here, we investigated the consequences of dystrophin deficiency during skeletal muscle development. We used single-cell transcriptome profiling to characterize the myogenic trajectory of human pluripotent stem cells and showed that DMD cells bifurcate to an alternative branch when they reach the somite stage. Dystrophin deficiency was linked to marked dysregulations of cell junction proteins involved in the cell state transitions characteristic of embryonic somitogenesis. Altogether, this work demonstrates that in vitro, dystrophin deficiency has deleterious effects on cell-cell communication during myogenic development, which should be considered in future therapeutic strategies for DMD.

3.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106055

RESUMO

Mutations in the DMD gene lead to Duchenne muscular dystrophy, a severe X-linked neuromuscular disorder that manifests itself as young boys acquire motor functions. DMD is typically diagnosed at 2 to 4 years of age, but the absence of dystrophin negatively impacts muscle structure and function before overt symptoms appear in patients, which poses a serious challenge in the optimization of standards of care. In this report, we investigated the early consequences of dystrophin deficiency during skeletal muscle development. We used single-cell transcriptome profiling to characterize the myogenic trajectory of human pluripotent stem cells and showed that DMD cells bifurcate to an alternative branch when they reach the somite stage. Here, dystrophin deficiency was linked to marked dysregulations of cell junction protein families involved in the cell state transitions characteristic of embryonic somitogenesis. Altogether, this work demonstrates that in vitro, dystrophin deficiency has deleterious effects on cell-cell communication during myogenic development, which should be considered in future therapeutic strategies for DMD.

4.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265896

RESUMO

Duchenne muscular dystrophy (DMD) is a severe muscle disease caused by impaired expression of dystrophin. Whereas mitochondrial dysfunction is thought to play an important role in DMD, the mechanism of this dysfunction remains to be clarified. Here we demonstrate that in DMD and other muscular dystrophies, a large number of Dlk1-Dio3 clustered miRNAs (DD-miRNAs) are coordinately up-regulated in regenerating myofibers and in the serum. To characterize the biological effect of this dysregulation, 14 DD-miRNAs were simultaneously overexpressed in vivo in mouse muscle. Transcriptomic analysis revealed highly similar changes between the muscle ectopically overexpressing 14 DD-miRNAs and the mdx diaphragm, with naturally up-regulated DD-miRNAs. Among the commonly dysregulated pathway we found repressed mitochondrial metabolism, and oxidative phosphorylation (OxPhos) in particular. Knocking down the DD-miRNAs in iPS-derived skeletal myotubes resulted in increased OxPhos activities. The data suggest that (1) DD-miRNAs are important mediators of dystrophic changes in DMD muscle, (2) mitochondrial metabolism and OxPhos in particular are targeted in DMD by coordinately up-regulated DD-miRNAs. These findings provide insight into the mechanism of mitochondrial dysfunction in muscular dystrophy.


Assuntos
MicroRNAs , Distrofia Muscular de Duchenne , Animais , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Distrofina , Camundongos Endogâmicos mdx , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo
5.
Diabetes ; 70(11): 2518-2531, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34526367

RESUMO

Type 2 diabetes (T2D) impairs hypoxia-inducible factor (HIF)1α activation, a master transcription factor that drives cellular adaptation to hypoxia. Reduced activation of HIF1α contributes to the impaired post-ischemic remodeling observed following myocardial infarction in T2D. Molidustat is an HIF stabilizer currently undergoing clinical trials for the treatment of renal anemia associated with chronic kidney disease; however, it may provide a route to pharmacologically activate HIF1α in the T2D heart. In human cardiomyocytes, molidustat stabilized HIF1α and downstream HIF target genes, promoting anaerobic glucose metabolism. In hypoxia, insulin resistance blunted HIF1α activation and downstream signaling, but this was reversed by molidustat. In T2D rats, oral treatment with molidustat rescued the cardiac metabolic dysfunction caused by T2D, promoting glucose metabolism and mitochondrial function, while suppressing fatty acid oxidation and lipid accumulation. This resulted in beneficial effects on post-ischemic cardiac function, with the impaired contractile recovery in T2D heart reversed by molidustat treatment. In conclusion, pharmacological HIF1α stabilization can overcome the blunted hypoxic response induced by insulin resistance. In vivo this corrected the abnormal metabolic phenotype and impaired post-ischemic recovery of the diabetic heart. Therefore, molidustat may be an effective compound to further explore the clinical translatability of HIF1α activation in the diabetic heart.


Assuntos
Cardiomiopatias Diabéticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pirazóis/farmacologia , Triazóis/farmacologia , Adaptação Fisiológica , Anemia Falciforme , Animais , Linhagem Celular , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metabolismo Energético , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Resistência à Insulina , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Oxigênio/metabolismo , Oxigênio/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Ratos
6.
J Cachexia Sarcopenia Muscle ; 12(1): 209-232, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33586340

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5000 male births. Symptoms appear in early childhood, with a diagnosis made mostly around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise-even asymptomatically-is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. METHODS: We have used both human tissue-derived myoblasts and human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis and compared their differentiation dynamics with that of healthy control cells by a comprehensive multi-omic analysis at seven time points. Results were strengthened with the analysis of isogenic CRISPR-edited human embryonic stem cells and through comparisons against published transcriptomic and proteomic datasets from human DMD muscles. The study was completed with DMD knockdown/rescue experiments in hiPSC-derived skeletal muscle progenitor cells and adenosine triphosphate measurement in hiPSC-derived myotubes. RESULTS: Transcriptome and miRnome comparisons combined with protein analyses demonstrated that hiPSC differentiation (i) leads to embryonic/foetal myotubes that mimic described DMD phenotypes at the differentiation endpoint and (ii) homogeneously and robustly recapitulates key developmental steps-mesoderm, somite, and skeletal muscle. Starting at the somite stage, DMD dysregulations concerned almost 10% of the transcriptome. These include mitochondrial genes whose dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of DMD skeletal muscle cells that begins early during myogenesis. All the omics data are available online for exploration through a graphical interface at https://muscle-dmd.omics.ovh/. CONCLUSIONS: Our data argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin roles during muscle development. This hiPSC model of skeletal muscle differentiation offers the possibility to explore these functions as well as find earlier DMD biomarkers and therapeutic targets.


Assuntos
Desenvolvimento Muscular , Distrofia Muscular de Duchenne , Distrofina , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Desenvolvimento Muscular/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Proteômica
8.
Nat Commun ; 10(1): 45, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604748

RESUMO

Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Here, we use engineered murine leukemia virus-like particles loaded with Cas9-sgRNA ribonucleoproteins (Nanoblades) to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades are also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for "all-in-one" homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.


Assuntos
Proteína 9 Associada à CRISPR/genética , Edição de Genes/métodos , Vetores Genéticos/genética , RNA Guia de Cinetoplastídeos/genética , Ribonucleoproteínas/genética , Animais , Linhagem Celular Tumoral , Reparo do DNA/genética , Embrião de Mamíferos , Fibroblastos , Edição de Genes/economia , Genoma/genética , Células HEK293 , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Pluripotentes Induzidas , Vírus da Leucemia Murina/genética , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Ativação Transcricional/genética
9.
Sci Rep ; 8(1): 17106, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459360

RESUMO

Use of human induced pluripotent stem cells (h-iPSCs) for bone tissue engineering is most appealing, because h-iPSCs are an inexhaustible source of osteocompetent cells. The present study investigated the contribution of undifferentiated h-iPSCs and elucidated aspects of the underlying mechanism(s) of the involvement of these cells to new bone formation. Implantation of undifferentiated h-iPSCs seeded on coral particles in ectopic sites of mice resulted in expression of osteocalcin and DMP-1, and in mineral content similar to that of the murine bone. The number of the implanted h-iPSCs decreased with time and disappeared by 30 days post-implantation. In contrast, expression of the murine osteogenic genes at day 15 and 30 post-implantation provided, for the first time, evidence that the implanted h-iPSCs affected the observed outcomes via paracrine mechanisms. Supporting evidence was provided because supernatant conditioned media from h-iPSCs (h-iPSC CM), promoted the osteogenic differentiation of human mesenchymal stem cells (h-MSCs) in vitro. Specifically, h-iPSC CM induced upregulation of the BMP-2, BMP-4 and BMP-6 genes, and promoted mineralization of the extracellular matrix. Given the current interest in the use of h-iPSCs for regenerative medicine applications, our study contributes new insights into aspects of the mechanism underlying the bone promoting capability of h-iPSCs.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Osteogênese , Comunicação Parácrina , Animais , Proteínas Morfogenéticas Ósseas/genética , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Medicina Regenerativa , Engenharia Tecidual , Regulação para Cima
10.
Skelet Muscle ; 5: 40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26568816

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a devastating X-linked recessive genetic myopathy. DMD physiopathology is still not fully understood and a prenatal onset is suspected but difficult to address. METHODS: The bone morphogenetic protein 4 (BMP4) is a critical signaling molecule involved in mesoderm commitment. Human induced pluripotent stem cells (hiPSCs) from DMD and healthy individuals and human embryonic stem cells (hESCs) treated with BMP4 allowed us to model the early steps of myogenesis in normal and DMD contexts. RESULTS: Unexpectedly, 72h following BMP4 treatment, a new long DMD transcript was detected in all tested hiPSCs and hESCs, at levels similar to that found in adult skeletal muscle. This novel transcript named "Dp412e" has a specific untranslated first exon which is conserved only in a sub-group of anthropoids including human. The corresponding novel dystrophin protein of 412-kiloDalton (kDa), characterized by an N-terminal-truncated actin-binding domain, was detected in normal BMP4-treated hiPSCs/hESCs and in embryoid bodies. Finally, using a phosphorodiamidate morpholino oligomer (PMO) targeting the DMD exon 53, we demonstrated the feasibility of exon skipping validation with this BMP4-inducible hiPSCs model. CONCLUSIONS: In this study, the use of hiPSCs to analyze early phases of human development in normal and DMD contexts has led to the discovery of an embryonic 412 kDa dystrophin isoform. Deciphering the regulation process(es) and the function(s) associated to this new isoform can contribute to a better understanding of the DMD physiopathology and potential developmental defects. Moreover, the simple and robust BMP4-inducible model highlighted here, providing large amount of a long DMD transcript and the corresponding protein in only 3 days, is already well-adapted to high-throughput and high-content screening approaches. Therefore, availability of this powerful cell platform can accelerate the development, validation and improvement of DMD genetic therapies.

11.
PLoS One ; 7(2): e30210, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363422

RESUMO

Conditional gene deletion in specific cell populations has helped the understanding of pancreas development. Using this approach, we have shown that deleting the glucocorticoid receptor (GR) gene in pancreatic precursor cells leads to a doubled beta-cell mass. Here, we provide genetic tools that permit a temporally and spatially controlled expression of target genes in pancreatic cells using the Tetracycline inducible system. To efficiently target the Tetracycline transactivator (tTA) in specific cell populations, we generated Bacterial Artificial Chromosomes (BAC) transgenic mice expressing the improved Tetracycline transactivator (itTA) either in pancreatic progenitor cells expressing the transcription factor Pdx1 (BAC-Pdx1-itTA), or in beta cells expressing the insulin1 gene (BAC-Ins1-itTA). In the two transgenic models, itTA-mediated activation of reporter genes was efficient and subject to regulation by Doxycycline (Dox). The analysis of a tetracycline-regulated LacZ reporter gene shows that in BAC-Pdx1-itTA mice, itTA is expressed from embryonic (E) day 11.5 in all pancreatic precursor cells. In the adult pancreas, itTA is active in mature beta, delta cells and in few acinar cells. In BAC-Ins1-itTA mice tTA is active from E13.5 and is restricted to beta cells in fetal and adult pancreas. In both lines, tTA activity was suppressed by Dox treatment and re-induced after Dox removal. Using these transgenic lines, we overexpressed the GR in selective pancreatic cell populations and found that overexpression in precursor cells altered adult beta-cell fraction but not glucose tolerance. In contrast, GR overexpression in mature beta cells did not alter beta-cell fraction but impaired glucose tolerance with insufficient insulin secretion. In conclusion, these new itTA mouse models will allow fine-tuning of gene expression to investigate gene function in pancreatic biology and help us understand how glucocorticoid signaling affects on the long-term distinct aspects of beta-cell biology.


Assuntos
Expressão Gênica , Células Secretoras de Insulina/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Doxiciclina/farmacologia , Feto/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Proteínas de Homeodomínio/metabolismo , Homeostase/efeitos dos fármacos , Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Óperon Lac , Masculino , Camundongos , Camundongos Transgênicos , Sequências Reguladoras de Ácido Nucleico/genética , Tetraciclina/farmacologia , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA