Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Transplant ; 17(9): 2350-2362, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28502091

RESUMO

While most human T cells express the CD28 costimulatory molecule constitutively, it is well known that age, inflammation, and viral infection can drive the generation of CD28null T cells. In vitro studies have demonstrated that CD28null cell effector function is not impacted by the presence of the CD28 costimulation blocker belatacept. As such, a prevailing hypothesis suggests that CD28null cells may precipitate costimulation blockade-resistant rejection. However, CD28+ cells possess more proliferative and multifunctional capacity, factors that may increase their ability to successfully mediate rejection. Here, we performed a retrospective immunophenotypic analysis of adult renal transplant recipients who experienced acute rejection on belatacept treatment as compared to those who did not. Intriguingly, our findings suggest that patients possessing higher frequency of CD28+ CD4+ TEM prior to transplant were more likely to experience acute rejection following treatment with a belatacept-based immunosuppressive regimen. Mechanistically, CD28+ CD4+ TEM contained significantly more IL-2 producers. In contrast, CD28null CD4+ TEM isolated from stable belatacept-treated patients exhibited higher expression of the 2B4 coinhibitory molecule as compared to those isolated from patients who rejected. These data raise the possibility that pretransplant frequencies of CD28+ CD4+ TEM could be used as a biomarker to predict risk of rejection following treatment with belatacept.


Assuntos
Abatacepte/farmacologia , Antígenos CD28/imunologia , Linfócitos T CD8-Positivos/imunologia , Resistência a Medicamentos/imunologia , Rejeição de Enxerto/imunologia , Memória Imunológica/imunologia , Transplante de Rim/efeitos adversos , Adulto , Idoso , Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Estudos de Casos e Controles , Feminino , Seguimentos , Taxa de Filtração Glomerular , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto , Humanos , Imunossupressores/farmacologia , Falência Renal Crônica/cirurgia , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias , Prognóstico , Estudos Retrospectivos
2.
Am J Transplant ; 17(9): 2285-2299, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28502128

RESUMO

Recently, newer therapies have been designed to more specifically target rejection in an effort to improve efficacy and limit unwanted toxicity. Belatacept, a CD28-CD80/86 specific reagent, is associated with superior patient survival and graft function compared with traditional therapy, but its adoption as a mainstay immunosuppressive therapy has been tempered by increased rejection rates. It is essential that the underlying mechanisms associated with this rejection be elucidated before belatacept is more widely used. To that end, we designed a study in a nonhuman primate kidney transplant model where animals were treated with either a belatacept- or a tacrolimus-based immunosuppressive regimen. Interestingly, we found that elevated pretransplant frequencies of CD28+ CD8+ TEMRA cells are associated with rejection on belatacept but not tacrolimus treatment. Further analysis showed that the CD28+ CD8+ TEMRA cells rapidly lose CD28 expression after transplant in those animals that go on to reject with the allograft infiltrate being predominantly CD28- . These data suggest that CD28+ memory T cells may be resistant to belatacept, capable of further differentiation including loss of CD28 expression while maintaining effector function. The unique signaling requirements of CD28+ memory T cells provide opportunities for the development of targeted therapies, which may synergize with belatacept to prevent costimulation-independent rejection.


Assuntos
Abatacepte/farmacologia , Antígenos CD28/imunologia , Linfócitos T CD8-Positivos/imunologia , Resistência a Medicamentos/imunologia , Rejeição de Enxerto/imunologia , Memória Imunológica/imunologia , Transplante de Rim/efeitos adversos , Animais , Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Taxa de Filtração Glomerular , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto , Imunossupressores/farmacologia , Falência Renal Crônica/cirurgia , Testes de Função Renal , Macaca mulatta , Complicações Pós-Operatórias
3.
Am J Transplant ; 17(5): 1182-1192, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28097811

RESUMO

The advent of costimulation blockade provides the prospect for targeted therapy with improved graft survival in transplant patients. Perhaps the most effective costimulation blockade in experimental models is the use of reagents to block the CD40/CD154 pathway. Unfortunately, successful clinical translation of anti-CD154 therapy has not been achieved. In an attempt to develop an agent that is as effective as previous CD154 blocking antibodies but lacks the risk of thromboembolism, we evaluated the efficacy and safety of a novel anti-human CD154 domain antibody (dAb, BMS-986004). The anti-CD154 dAb effectively blocked CD40-CD154 interactions but lacked crystallizable fragment (Fc) binding activity and resultant platelet activation. In a nonhuman primate kidney transplant model, anti-CD154 dAb was safe and efficacious, significantly prolonging allograft survival without evidence of thromboembolism (Median survival time 103 days). The combination of anti-CD154 dAb and conventional immunosuppression synergized to effectively control allograft rejection (Median survival time 397 days). Furthermore, anti-CD154 dAb treatment increased the frequency of CD4+ CD25+ Foxp3+ regulatory T cells. This study demonstrates that the use of a novel anti-CD154 dAb that lacks Fc binding activity is safe without evidence of thromboembolism and is equally as potent as previous anti-CD154 agents at prolonging renal allograft survival in a nonhuman primate preclinical model.


Assuntos
Anticorpos Monoclonais/farmacologia , Ligante de CD40/imunologia , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/imunologia , Imunoglobulina G/imunologia , Transplante de Rim/efeitos adversos , Animais , Taxa de Filtração Glomerular , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto/efeitos dos fármacos , Testes de Função Renal , Primatas , Fatores de Risco , Linfócitos T Reguladores/imunologia , Imunologia de Transplantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA