Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(4): 1314-1324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178588

RESUMO

The integration of first- (1G) and second-generation (2G) ethanol production by adding sugarcane juice or molasses to lignocellulosic hydrolysates offers the possibility to overcome the problem of inhibitors (acetic acid, furfural, hydroxymethylfurfural and phenolic compounds), and add nutrients (such as salts, sugars and nitrogen sources) to the fermentation medium, allowing the production of higher ethanol titers. In this work, an 1G2G production process was developed with hemicellulosic hydrolysate (HH) from a diluted sulfuric acid pretreatment of sugarcane bagasse and sugarcane molasses. The industrial Saccharomyces cerevisiae CAT-1 was genetically modified for xylose consumption and used for co-fermentation of sucrose, fructose, glucose, and xylose. The fed-batch fermentation with high cell density that mimics an industrial fermentation was performed at bench scale fermenter, achieved high volumetric ethanol productivity of 1.59 g L-1 h-1, 0.39 g g-1 of ethanol yield, and 44.5 g L-1 ethanol titer, and shown that the yeast was able to consume all the sugars present in must simultaneously. With the results, it was possible to establish a mass balance for the global process: from pretreatment to the co-fermentation of molasses and HH, and it was possible to establish an effective integrated process (1G2G) with sugarcane molasses and HH co-fermentation employing a recombinant yeast.


Assuntos
Celulose , Polissacarídeos , Saccharum , Celulose/metabolismo , Fermentação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose , Melaço , Saccharum/metabolismo , Açúcares , Etanol
2.
Bioprocess Biosyst Eng ; 46(8): 1133-1145, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36422699

RESUMO

The recently discovered wild yeast Wickerhamomyces sp. UFFS-CE-3.1.2 was analyzed through a high-throughput experimental design to improve ethanol yields in synthetic media with glucose, xylose, and cellobiose as carbon sources and acetic acid, furfural, formic acid, and NaCl as fermentation inhibitors. After Plackett-Burman (PB) and central composite design (CCD), the optimized condition was used in a fermentation kinetic analysis to compare this yeast's performance with an industrial Saccharomyces cerevisiae strain (JDY-01) genetically engineered to achieve a higher xylose fermentation capacity and fermentation inhibitors tolerance by overexpressing the genes XYL1, XYL2, XKS1, and TAL1. Our results show that furfural and NaCl had no significant effect on sugar consumption by UFFS-CE-3.1.2. Surprisingly, acetic acid negatively affected glucose but not xylose and cellobiose consumption. In contrast, the pH positively affected all the analyzed responses, indicating a cell's preference for alkaline environments. In the CCD, sugar concentration negatively affected the yields of ethanol, xylitol, and cellular biomass. Therefore, fermentation kinetics were carried out with the average concentrations of sugars and fermentation inhibitors and the highest tested pH value (8.0). Although UFFS-CE-3.1.2 fermented glucose efficiently, xylose and cellobiose were mainly used for cellular growth. Interestingly, the genetically engineered strain JDY-01 consumed ~ 30% more xylose and produced ~ 20% more ethanol. Also, while UFFS-CE-3.1.2 only consumed 32% of the acetic acid of the medium, JDY-01 consumed > 60% of it, reducing its toxic effects. Thus, the overexpressed genes played an essential role in the inhibitors' tolerance, and the applied engineering strategy may help improve 2G ethanol production.


Assuntos
Celobiose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Etanol , Projetos de Pesquisa , Furaldeído , Cinética , Cloreto de Sódio , Fermentação , Xilose , Glucose
3.
FEMS Yeast Res ; 21(6)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34477865

RESUMO

First-generation ethanol (E1G) is based on the fermentation of sugars released from saccharine or starch sources, while second-generation ethanol (E2G) is focused on the fermentation of sugars released from lignocellulosic feedstocks. During the fractionation process to release sugars from hemicelluloses (mainly xylose), some inhibitor compounds are released hindering fermentation. Thus, the biggest challenge of using hemicellulosic hydrolysate is selecting strains and processes able to efficiently ferment xylose and tolerate inhibitors. With the aim of diluting inhibitors, sugarcane molasses (80% of sucrose content) can be mixed to hemicellulosic hydrolysate in an integrated E1G-E2G process. Cofermentations of xylose and sucrose were evaluated for the native xylose consumer Spathaspora passalidarum and a recombinant Saccharomyces cerevisiae strain. The industrial S. cerevisiae strain CAT-1 was modified to overexpress the XYL1, XYL2 and XKS1 genes and a mutant ([4-59Δ]HXT1) version of the low-affinity HXT1 permease, generating strain MP-C5H1. Although S. passalidarum showed better results for xylose fermentation, this yeast showed intracellular sucrose hydrolysis and low sucrose consumption in microaerobic conditions. Recombinant S. cerevisiae showed the best performance for cofermentation, and a batch strategy at high cell density in bioreactor achieved unprecedented results of ethanol yield, titer and volumetric productivity in E1G-E2G production process.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Etanol , Fermentação , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Xilose
4.
Arch Microbiol ; 203(4): 1787-1793, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33481072

RESUMO

Strain CCI5, an oligotrophic bacterium, was isolated from leaf soil collected in Japan. Strain CCI5 grew at temperatures between 25 °C and 43 °C (optimum temperature, 40 °C) and at pHs between 6.0 and 10.0 (optimum pH, 9.0). Its major fatty acids were anteiso-C15:0 and iso-C16:0, and menaquinone 7 was the only detected quinone system. In a phylogenetic analysis based on 16S rRNA gene sequences, strain CCI5 presented as a member of the genus Paenibacillus. Moreover, multilocus sequence analysis based on partial sequences of the atpD, dnaA, gmk, and infB genes showed that strain CCI5 tightly clustered with P. glycanilyticus DS-1T. The draft genome of strain CCI5 consisted of 6,864,972 bp with a G+C content of 50.7% and comprised 6,189 predicted coding sequences. The genome average nucleotide identity value (97.8%) between strain CCI5 and P. glycanilyticus DS-1T was below the cut-off value for prokaryotic subspecies delineation. Based on its phenotypic, chemotaxonomic, and phylogenetic features, strain CCI5 (= HUT-8145T = KCTC 43270T) can be considered as a novel subspecies within the genus Paenibacillus with the proposed name Paenibacillus glycanilyticus subsp. hiroshimensis subsp. nov.


Assuntos
Paenibacillus , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Japão , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico/genética , Paenibacillus/classificação , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Filogenia , Folhas de Planta/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo
5.
J Biol Chem ; 294(11): 4065-4078, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30655295

RESUMO

Glucuronoxylanases are endo-xylanases and members of the glycoside hydrolase family 30 subfamilies 7 (GH30-7) and 8 (GH30-8). Unlike for the well-studied GH30-8 enzymes, the structural and functional characteristics of GH30-7 enzymes remain poorly understood. Here, we report the catalytic properties and three-dimensional structure of GH30-7 xylanase B (Xyn30B) identified from the cellulolytic fungus Talaromyces cellulolyticus Xyn30B efficiently degraded glucuronoxylan to acidic xylooligosaccharides (XOSs), including an α-1,2-linked 4-O-methyl-d-glucuronosyl substituent (MeGlcA). Rapid analysis with negative-mode electrospray-ionization multistage MS (ESI(-)-MS n ) revealed that the structures of the acidic XOS products are the same as those of the hydrolysates (MeGlcA2Xyl n , n > 2) obtained with typical glucuronoxylanases. Acidic XOS products were further degraded by Xyn30B, releasing first xylobiose and then xylotetraose and xylohexaose as transglycosylation products. This hydrolase reaction was unique to Xyn30B, and the substrate was cleaved at the xylobiose unit from its nonreducing end, indicating that Xyn30B is a bifunctional enzyme possessing both endo-glucuronoxylanase and exo-xylobiohydrolase activities. The crystal structure of Xyn30B was determined as the first structure of a GH30-7 xylanase at 2.25 Å resolution, revealing that Xyn30B is composed of a pseudo-(α/ß)8-catalytic domain, lacking an α6 helix, and a small ß-rich domain. This structure and site-directed mutagenesis clarified that Arg46, conserved in GH30-7 glucuronoxylanases, is a critical residue for MeGlcA appendage-dependent xylan degradation. The structural comparison between Xyn30B and the GH30-8 enzymes suggests that Asn93 in the ß2-α2 loop is involved in xylobiohydrolase activity. In summary, our findings indicate that Xyn30B is a bifunctional endo- and exo-xylanase.


Assuntos
Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Talaromyces/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray
6.
Arch Microbiol ; 202(7): 1757-1762, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32342124

RESUMO

An aerobic, oligotrophic, Gram-positive, non-sporulating, motile, rod-shaped, palladium-leaching bacterial strain, Deinococcus sp. KR-1, was previously isolated from pond water collected in Japan. This strain grew at 10 °C to 40 °C (optimum 30 °C), at pH 4.5 to 11.5 (optimum pH 8.0), and in the presence of 2.0% NaCl. Its major cellular fatty acids were C15: 1ω6 and C16 : 1ω7c. The quinone system was menaquinone 8. Multilocus sequence analysis based on partial sequences of four housekeeping genes (atpD, dnaA, gyrB and rpoB) showed that branching of Deinococcus sp. KR-1 was distant to those of Deinococcus type strains. The genome average nucleotide identity value between strain KR-1 and its closest related Deinococcus type strain was less than 95.69%. Based on its phenotypic, chemotaxonomic and phylogenetic data, strain KR-1 (= HUT-8138T = KCTC 33977T) can be considered a novel species within the genus Deinococcus with the proposed name Deinococcus kurensis sp. nov.


Assuntos
Deinococcus/classificação , Filogenia , Lagoas/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Deinococcus/genética , Ácidos Graxos/análise , Japão , Tipagem de Sequências Multilocus , Análise de Sequência de DNA , Especificidade da Espécie , Vitamina K 2/análogos & derivados
7.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31492671

RESUMO

Glycoside hydrolase family 30 subfamily 7 (GH30-7) enzymes include various types of xylanases, such as glucuronoxylanase, endoxylanase, xylobiohydrolase, and reducing-end xylose-releasing exoxylanase. Here, we characterized the mode of action and gene expression of the GH30-7 endoxylanase from the cellulolytic fungus Talaromyces cellulolyticus (TcXyn30C). TcXyn30C has a modular structure consisting of a GH30-7 catalytic domain and a C-terminal cellulose binding module 1, whose cellulose-binding ability has been confirmed. Sequence alignment of GH30-7 xylanases exhibited that TcXyn30C has a conserved Phe residue at the position corresponding to a conserved Arg residue in GH30-7 glucuronoxylanases, which is required for the recognition of the 4-O-methyl-α-d-glucuronic acid (MeGlcA) substituent. TcXyn30C degraded both glucuronoxylan and arabinoxylan with similar kinetic constants and mainly produced linear xylooligosaccharides (XOSs) with 2 to 3 degrees of polymerization, in an endo manner. Notably, the hydrolysis of glucuronoxylan caused an accumulation of 22-(MeGlcA)-xylobiose (U4m2X). The production of this acidic XOS is likely to proceed via multistep reactions by putative glucuronoxylanase activity that produces 22-(MeGlcA)-XOSs (X n U4m2X, n ≥ 0) in the initial stages of the hydrolysis and by specific release of U4m2X from a mixture containing X n U4m2X. Our results suggest that the unique endoxylanase activity of TcXyn30C may be applicable to the production of linear and acidic XOSs. The gene xyn30C was located adjacent to the putative GH62 arabinofuranosidase gene (abf62C) in the T. cellulolyticus genome. The expression of both genes was induced by cellulose. The results suggest that TcXyn30C may be involved in xylan removal in the hydrolysis of lignocellulose by the T. cellulolyticus cellulolytic system.IMPORTANCE Xylooligosaccharides (XOSs), which are composed of xylose units with a ß-1,4 linkage, have recently gained interest as prebiotics in the food and feed industry. Apart from linear XOSs, branched XOSs decorated with a substituent such as methyl glucuronic acid and arabinose also have potential applications. Endoxylanase is a promising tool in producing XOSs from xylan. The structural variety of XOSs generated depends on the substrate specificity of the enzyme as well as the distribution of the substituents in xylan. Thus, the exploration of endoxylanases with novel specificities is expected to be useful in the provision of a series of XOSs. In this study, the endoxylanase TcXyn30C from Talaromyces cellulolyticus was characterized as a unique glycoside hydrolase belonging to the family GH30-7, which specifically releases 22-(4-O-methyl-α-d-glucuronosyl)-xylobiose from hardwood xylan. This study provides new insights into the production of linear and branched XOSs by GH30-7 endoxylanase.


Assuntos
Endo-1,4-beta-Xilanases/genética , Proteínas Fúngicas/genética , Talaromyces/enzimologia , Xilanos/metabolismo , Domínio Catalítico , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/metabolismo , Glucuronatos/metabolismo , Hidrólise , Cinética , Oligossacarídeos/metabolismo , Especificidade por Substrato , Talaromyces/genética , Madeira/microbiologia , Xilose/metabolismo
8.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31003983

RESUMO

In this study, we characterized the mode of action of reducing-end xylose-releasing exoxylanase (Rex), which belongs to the glycoside hydrolase family 30-7 (GH30-7). GH30-7 Rex, isolated from the cellulolytic fungus Talaromyces cellulolyticus (Xyn30A), exists as a dimer. The purified Xyn30A released xylose from linear xylooligosaccharides (XOSs) 3 to 6 xylose units in length with similar kinetic constants. Hydrolysis of branched, borohydride-reduced, and p-nitrophenyl XOSs clarified that Xyn30A possesses a Rex activity. 1H nuclear magnetic resonance (1H NMR) analysis of xylotriose hydrolysate indicated that Xyn30A degraded XOSs via a retaining mechanism and without recognizing an anomeric structure at the reducing end. Hydrolysis of xylan by Xyn30A revealed that the enzyme continuously liberated both xylose and two types of acidic XOSs: 22-(4-O-methyl-α-d-glucuronyl)-xylotriose (MeGlcA2Xyl3) and 22-(MeGlcA)-xylobiose (MeGlcA2Xyl2). These acidic products were also detected during hydrolysis using a mixture of MeGlcA2Xyl n (n = 2 to 14) as the substrate. This indicates that Xyn30A can release MeGlcA2Xyl n (n = 2 and 3) in an exo manner. Comparison of subsites in Xyn30A and GH30-7 glucuronoxylanase using homology modeling suggested that the binding of the reducing-end residue at subsite +2 was partially prevented by a Gln residue conserved in GH30-7 Rex; additionally, the Arg residue at subsite -2b, which is conserved in glucuronoxylanase, was not found in Xyn30A. Our results lead us to propose that GH30-7 Rex plays a complementary role in hydrolysis of xylan by fungal cellulolytic systems.IMPORTANCE Endo- and exo-type xylanases depolymerize xylan and play crucial roles in the assimilation of xylan in bacteria and fungi. Exoxylanases release xylose from the reducing or nonreducing ends of xylooligosaccharides; this is generated by the activity of endoxylanases. ß-Xylosidase, which hydrolyzes xylose residues on the nonreducing end of a substrate, is well studied. However, the function of reducing-end xylose-releasing exoxylanases (Rex), especially in fungal cellulolytic systems, remains unclear. This study revealed the mode of xylan hydrolysis by Rex from the cellulolytic fungus Talaromyces cellulolyticus (Xyn30A), which belongs to the glycoside hydrolase family 30-7 (GH30-7). A conserved residue related to Rex activity is found in the substrate-binding site of Xyn30A. These findings will enhance our understanding of the function of GH30-7 Rex in the cooperative hydrolysis of xylan by fungal enzymes.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/metabolismo , Talaromyces/enzimologia , Xilose/metabolismo , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cinética , Especificidade por Substrato , Talaromyces/genética , Xilanos/metabolismo
9.
J Ind Microbiol Biotechnol ; 44(6): 879-891, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28181081

RESUMO

The pentose phosphate pathway (PPP) plays an important role in the efficiency of xylose fermentation during cellulosic ethanol production. In simultaneous saccharification and co-fermentation (SSCF), the optimal temperature for cellulase hydrolysis of lignocellulose is much higher than that of fermentation. Successful use of SSCF requires optimization of the expression of PPP genes at elevated temperatures. This study examined the combinatorial expression of PPP genes at high temperature. The results revealed that over-expression of TAL1 and TKL1 in Saccharomyces cerevisiae (S. cerevisiae) at 30 °C and over-expression of all PPP genes at 36 °C resulted in the highest ethanol productivities. Furthermore, combinatorial over-expression of PPP genes derived from S. cerevisiae and a thermostable yeast Kluyveromyces marxianus allowed the strain to ferment xylose with ethanol productivity of 0.51 g/L/h, even at 38 °C. These results clearly demonstrate that xylose metabolism can be improved by the utilization of appropriate combinations of thermostable PPP genes in high-temperature production of ethanol.


Assuntos
Etanol/metabolismo , Via de Pentose Fosfato/genética , Saccharomyces cerevisiae/genética , Xilose/metabolismo , Celulase/metabolismo , Fermentação , Temperatura Alta , Kluyveromyces/genética , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Transaldolase/genética , Transcetolase/genética
10.
Biotechnol Lett ; 37(10): 1973-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26087949

RESUMO

OBJECTIVES: Since uptake of xylose limits its fermentation, we aimed to identify novel sugar transporters from Scheffersomyces stipitis that allow xylose uptake and fermentation by engineered Saccharomyces cerevisiae. RESULTS: An hxt-null S. cerevisiae strain, lacking the major hexose transporters (hxt1Δ-hxt7Δ and gal2Δ) but having high xylose reductase, xylitol dehydrogenase and xylulokinase activities, was transformed with a genomic DNA library from S. stipitis. Four plasmids allowing growth on xylose contained three genes encoding sugar transporters: the previously characterized XUT1 permease, and two new genes (HXT2.6 and QUP2) not previously identified as xylose transporters. High cell density fermentations with the recombinant strains showed that the XUT1 gene allowed ethanol production from xylose or xylose plus glucose as carbon sources, while the HXT2.6 permease produced both ethanol and xylitol, and the strain expressing the QUP2 gene produced mainly xylitol during xylose consumption. CONCLUSIONS: Cloning novel sugar transporters not previously identified in the S. stipitis genome using an hxt-null S. cerevisiae strain with a high xylose-utilizing pathway provides novel promising target genes for improved lignocellulosic ethanol production by yeasts.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Engenharia Metabólica , Pichia/enzimologia , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Carboidratos/análise , Clonagem Molecular , Meios de Cultura/química , Citosol/química , Fermentação , Expressão Gênica , Testes Genéticos , Biblioteca Genômica , Proteínas Facilitadoras de Transporte de Glucose/genética , Pichia/genética , Plasmídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
11.
J Ind Microbiol Biotechnol ; 42(12): 1623-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438430

RESUMO

The Saccharomyces cerevisiae HAP4 gene encodes a transcription activator that plays a key role in controlling the expression of genes involved in mitochondrial respiration and reductive pathways. This work examines the effect of knockout of the HAP4 gene on aerobic ethanol production in a xylose-utilizing S. cerevisiae strain. A hap4-deleted recombinant yeast strain (B42-DHAP4) showed increased maximum concentration, production rate, and yield of ethanol compared with the reference strain MA-B42, irrespective of cultivation medium (glucose, xylose, or glucose/xylose mixtures). Notably, B42-DHAP4 was capable of producing ethanol from xylose as the sole carbon source under aerobic conditions, whereas no ethanol was produced by MA-B42. Moreover, the rate of ethanol production and ethanol yield (0.44 g/g) from the detoxified hydrolysate of wood chips was markedly improved in B42-DHAP4 compared to MA-B42. Thus, the results of this study support the view that deleting HAP4 in xylose-utilizing S. cerevisiae strains represents a useful strategy in ethanol production processes.


Assuntos
Fator de Ligação a CCAAT/deficiência , Etanol/metabolismo , Etanol/provisão & distribuição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Anaerobiose , Fator de Ligação a CCAAT/genética , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Madeira/química , Madeira/metabolismo
12.
Microb Cell Fact ; 13: 16, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24467867

RESUMO

BACKGROUND: There has been much research on the bioconversion of xylose found in lignocellulosic biomass to ethanol by genetically engineered Saccharomyces cerevisiae. However, the rate of ethanol production from xylose in these xylose-utilizing yeast strains is quite low compared to their glucose fermentation. In this study, two diploid xylose-utilizing S. cerevisiae strains, the industrial strain MA-R4 and the laboratory strain MA-B4, were employed to investigate the differences between anaerobic fermentation of xylose and glucose, and general differences between recombinant yeast strains, through genome-wide transcription analysis. RESULTS: In MA-R4, many genes related to ergosterol biosynthesis were expressed more highly with glucose than with xylose. Additionally, these ergosterol-related genes had higher transcript levels in MA-R4 than in MA-B4 during glucose fermentation. During xylose fermentation, several genes related to central metabolic pathways that typically increase during growth on non-fermentable carbon sources were expressed at higher levels in both strains. Xylose did not fully repress the genes encoding enzymes of the tricarboxylic acid and respiratory pathways, even under anaerobic conditions. In addition, several genes involved in spore wall metabolism and the uptake of ammonium, which are closely related to the starvation response, and many stress-responsive genes mediated by Msn2/4p, as well as trehalose synthase genes, increased in expression when fermenting with xylose, irrespective of the yeast strain. We further observed that transcript levels of genes involved in xylose metabolism, membrane transport functions, and ATP synthesis were higher in MA-R4 than in MA-B4 when strains were fermented with glucose or xylose. CONCLUSIONS: Our transcriptomic approach revealed the molecular events underlying the response to xylose or glucose and differences between MA-R4 and MA-B4. Xylose-utilizing S. cerevisiae strains may recognize xylose as a non-fermentable carbon source, which induces a starvation response and adaptation to oxidative stress, resulting in the increased expression of stress-response genes.


Assuntos
Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma , Xilose/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Ergosterol/biossíntese , Etanol/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
13.
J Ind Microbiol Biotechnol ; 41(12): 1773-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25355632

RESUMO

The industrial Saccharomyces cerevisiae IR-2 is a promising host strain to genetically engineer xylose-utilizing yeasts for ethanol fermentation from lignocellulosic hydrolysates. Two IR-2-based haploid strains were selected based upon the rate of xylulose fermentation, and hybrids were obtained by mating recombinant haploid strains harboring heterogeneous xylose dehydrogenase (XDH) (wild-type NAD(+)-dependent XDH or engineered NADP(+)-dependent XDH, ARSdR), xylose reductase (XR) and xylulose kinase (XK) genes. ARSdR in the hybrids selected for growth rates on yeast extract-peptone-dextrose (YPD) agar and YP-xylose agar plates typically had a higher activity than NAD(+)-dependent XDH. Furthermore, the xylose-fermenting performance of the hybrid strain SE12 with the same level of heterogeneous XDH activity was similar to that of a recombinant strain of IR-2 harboring a single set of genes, XR/ARSdR/XK. These results suggest not only that the recombinant haploid strains retain the appropriate genetic background of IR-2 for ethanol production from xylose but also that ARSdR is preferable for xylose fermentation.


Assuntos
Etanol/metabolismo , Fermentação , Saccharomyces cerevisiae/genética , Xilose/metabolismo , Oxirredutases do Álcool/genética , Quimera , Cruzamentos Genéticos , D-Xilulose Redutase/genética , Engenharia Genética , Glucose/metabolismo , Haploidia , Microbiologia Industrial , NADP/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Saccharomyces cerevisiae/metabolismo
14.
Bioprocess Biosyst Eng ; 37(4): 749-54, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23917411

RESUMO

In the bioethanol production process, high solid saccharification and glucose/xylose co-fermentation are important technologies for obtaining increased ethanol concentrations; however, bench-scale studies using combinations of these methods are limited. In this study, we hydrolyzed high solid concentration of milled eucalyptus using commercial enzymes and obtained 138.4 g/L total monomeric sugar concentration. These sugars were fermented to 53.5 g/L of ethanol by a xylose-utilizing recombinant Saccharomyces cerevisiae strain, MA-R4. These experiments were performed in bench scale (using 50 L scale solid mixer and 70 L scale fermenter). The results obtained in this study were comparable to our previous results in laboratory scale, indicating that we successfully achieved an efficient high solid saccharification and glucose/xylose co-fermentation system in bench scale.


Assuntos
Etanol/metabolismo , Eucalyptus/química , Fermentação/fisiologia , Glucose , Saccharomyces cerevisiae/crescimento & desenvolvimento , Xilose , Glucose/química , Glucose/metabolismo , Saccharomyces cerevisiae/genética , Xilose/química , Xilose/metabolismo
15.
Biosci Biotechnol Biochem ; 77(7): 1579-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23832338

RESUMO

We prepared eight recombinant Saccharomyces cerevisae strains, including three strains generated in this study that were produced by chromosomal integration of xylose utilization pathway enzymes genes. Among these strains, MA-R4 was the most efficient at producing ethanol from rice straw enzymatic hydrolysate, indicating that it is a superior strain for bioethanol production.


Assuntos
Biocombustíveis/microbiologia , Etanol/metabolismo , Fermentação , Oryza/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , DNA Recombinante/genética , Hidrólise , Saccharomyces cerevisiae/enzimologia , Especificidade da Espécie
16.
Biosci Biotechnol Biochem ; 77(7): 1505-10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23832346

RESUMO

The yeast Kluyveromyces marxianus is considered as a potential alternative to Saccharomyces cerevisiae in producing ethanol as a biofuel. In this study, we investigated the ethanol fermentation properties of novel K. marxianus strain DMB1, isolated from bagasse hydrolysates. This strain utilized sorbitol as well as various pentoses and hexoses as single carbon sources under aerobic conditions and produced ethanol from glucose in hydrolysates of the Japanese cedar at 42 °C. Reference strains K. marxianus NBRC1777 and S. cerevisiae BY4743 did not assimilate sorbitol or ferment lignocellulosic hydrolysates to ethanol at this temperature. Thus strain DMB1 appears to be optimal for producing bioethanol at high temperatures, and might provide a valuable means of increasing the efficiency of ethanol fermentation.


Assuntos
Biocombustíveis/microbiologia , Biomassa , Etanol/metabolismo , Kluyveromyces/metabolismo , Lignina/metabolismo , Celulose/metabolismo , Cryptomeria/química , Fermentação , Glucose/metabolismo , Hidrólise , Temperatura
17.
Cryobiology ; 67(2): 241-3, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23810900

RESUMO

Antarctic basidiomycetous yeast Mrakia blollopis SK-4 has unique fermentability for various sugars under a low temperature condition. Hence, this yeast was used for ethanol fermentation from glucose and also for direct ethanol fermentation (DEF) from cellulosic biomass without/with Tween 80 at 10°C. Maximally, 48.2 g/l ethanol was formed from 12% (w/v) glucose. DEF converted filter paper, Japanese cedar and Eucalyptus to 12.2 g/l, 12.5 g/l and 7.2 g/l ethanol, respectively. In the presence of 1% (v/v) Tween 80, ethanol concentration increased by about 1.1-1.6-fold compared to that without Tween 80. This is the first report on DEF using cryophilic fungi under a low temperature condition. We consider that M. blollopis SK-4 has a good potential for ethanol fermentation in cold environments.


Assuntos
Basidiomycota/metabolismo , Etanol/metabolismo , Fermentação , Lignina/metabolismo , Regiões Antárticas , Biomassa , Temperatura Baixa
18.
J Biosci Bioeng ; 136(1): 13-19, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100649

RESUMO

Acetogens grow autotrophically and use hydrogen (H2) as the energy source to fix carbon dioxide (CO2). This feature can be applied to gas fermentation, contributing to a circular economy. A challenge is the gain of cellular energy from H2 oxidation, which is substantially low, especially when acetate formation coupled with ATP production is diverted to other chemicals in engineered strains. Indeed, an engineered strain of the thermophilic acetogen Moorella thermoacetica that produces acetone lost autotrophic growth on H2 and CO2. We aimed to recover autotrophic growth and enhance acetone production, in which ATP production was assumed to be a limiting factor, by supplementing with electron acceptors. Among the four selected electron acceptors, thiosulfate and dimethyl sulfoxide (DMSO) enhanced both bacterial growth and acetone titers. DMSO was the most effective and was further analyzed. We showed that DMSO supplementation enhanced intracellular ATP levels, leading to increased acetone production. Although DMSO is an organic compound, it functions as an electron acceptor, not a carbon source. Thus, supplying electron acceptors is a potential strategy to complement the low ATP production caused by metabolic engineering and to improve chemical production from H2 and CO2.


Assuntos
Dióxido de Carbono , Moorella , Dióxido de Carbono/metabolismo , Acetona/metabolismo , Elétrons , Dimetil Sulfóxido/metabolismo , Hidrogênio/metabolismo , Moorella/genética , Moorella/metabolismo , Oxidantes/metabolismo , Trifosfato de Adenosina/metabolismo
19.
Front Microbiol ; 13: 897066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633713

RESUMO

Hydrogen (H2) converted to reducing equivalents is used by acetogens to fix and metabolize carbon dioxide (CO2) to acetate. The utilization of H2 enables not only autotrophic growth, but also mixotrophic metabolism in acetogens, enhancing carbon utilization. This feature seems useful, especially when the carbon utilization efficiency of organic carbon sources is lowered by metabolic engineering to produce reduced chemicals, such as ethanol. The potential advantage was tested using engineered strains of Moorella thermoacetica that produce ethanol. By adding H2 to the fructose-supplied culture, the engineered strains produced increased levels of acetate, and a slight increase in ethanol was observed. The utilization of a knockout strain of the major acetate production pathway, aimed at increasing the carbon flux to ethanol, was unexpectedly hindered by H2-mediated growth inhibition in a dose-dependent manner. Metabolomic analysis showed a significant increase in intracellular NADH levels due to H2 in the ethanol-producing strain. Higher NADH level was shown to be the cause of growth inhibition because the decrease in NADH level by dimethyl sulfoxide (DMSO) reduction recovered the growth. When H2 was not supplemented, the intracellular NADH level was balanced by the reversible electron transfer from NADH oxidation to H2 production in the ethanol-producing strain. Therefore, reversible hydrogenase activity confers the ability and flexibility to balance the intracellular redox state of M. thermoacetica. Tuning of the redox balance is required in order to benefit from H2-supplemented mixotrophy, which was confirmed by engineering to produce acetone.

20.
Biosci Biotechnol Biochem ; 75(6): 1140-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21670522

RESUMO

Construction of xylose- and xylo-oligosaccharide-fermenting Saccharomyces cerevisiae strains is important, because hydrolysates derived from lignocellulosic biomass contain significant amounts of these sugars. We have obtained recombinant S. cerevisiae strain MA-D4 (D-XKXDHXR), expressing xylose reductase, xylitol dehydrogenase and xylulokinase. In the present study, we generated recombinant strain D-XSD/XKXDHXR by transforming MA-D4 with a ß-xylosidase gene cloned from the filamentous fungus Trichoderma reesei. The intracellular ß-xylosidase-specific activity of D-XSD/XKXDHXR was high, while that of the control strain was under the limit of detection. D-XSD/XKXDHXR produced ethanol, and xylose accumulated in the culture supernatant under fermentation in a medium containing xylo-oligosaccharides as sole carbon source. ß-Xylosidase-specific activity in D-XSD/XKXDHXR declined due to xylose both in vivo and in vitro. D-XSD/XKXDHXR converted xylo-oligosaccharides in an enzymatic hydrolysate of eucalyptus to ethanol. These results indicate that D-XSD/XKXDHXR efficiently converted xylo-oligosaccharides to xylose and subsequently to ethanol.


Assuntos
Etanol/metabolismo , Microbiologia Industrial/métodos , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilose/biossíntese , Xilosidases/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Biocombustíveis , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Fermentação , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Organismos Geneticamente Modificados/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Trichoderma/química , Trichoderma/genética , Xilosidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA