Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(3): 868-873.e4, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040043

RESUMO

BACKGROUND: The integumentary system of the skin serves as an exceptional protective barrier, with the stratum corneum situated at the forefront. This outermost layer is composed of keratinocytes that biosynthesize filaggrin (encoded by the gene Flg), a pivotal constituent in maintaining skin health. Nevertheless, the precise role of sensory nerves in restoration of the skin barrier after tape stripping-induced epidermal disruption, in contrast to the wound-healing process, remains a tantalizing enigma. OBJECTIVE: This study aimed to elucidate the cryptic role of sensory nerves in repair of the epidermal barrier following tape stripping-induced disruption. METHODS: Through the implementation of resiniferatoxin (RTX)-treated denervation mouse model, we investigated the kinetics of barrier repair after tape stripping and performed immunophenotyping and gene expression analysis in the skin or dorsal root ganglia (DRG) to identify potential neuropeptides. Furthermore, we assessed the functional impact of candidates on the recovery of murine keratinocytes and RTX-treated mice. RESULTS: Ablation of TRPV1-positive sensory nerve attenuated skin barrier recovery and sustained subcutaneous inflammation, coupled with elevated IL-6 level in ear homogenates after tape stripping. Expression of the keratinocyte differentiation marker Flg in the ear skin of RTX-treated mice was decreased compared with that in control mice. Through neuropeptide screening, we found that the downregulation of Flg by IL-6 was counteracted by somatostatin or octreotide (a chemically stable somatostatin analog). Furthermore, RTX-treated mice given octreotide exhibited a partial improvement in barrier recovery after tape stripping. CONCLUSION: Sensory neurons expressing TRPV1 play an indispensable role in restoring barrier function following epidermal injury. Our findings suggest the potential involvement of somatostatin in restoring epidermal repair after skin injury.


Assuntos
Interleucina-6 , Neuropeptídeos , Camundongos , Animais , Interleucina-6/metabolismo , Octreotida/metabolismo , Epiderme/metabolismo , Somatostatina/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
2.
Nat Immunol ; 12(12): 1167-75, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22037600

RESUMO

Toll-like receptor (TLR) signaling activates the inhibitor of transcription factor NF-κB (IκB) kinase (IKK) complex, which governs NF-κB-mediated transcription during inflammation. The RNase regnase-1 serves a critical role in preventing autoimmunity by controlling the stability of mRNAs that encode cytokines. Here we show that the IKK complex controlled the stability of mRNA for interleukin 6 (IL-6) by phosphorylating regnase-1 in response to stimulation via the IL-1 receptor (IL-1R) or TLR. Phosphorylated regnase-1 underwent ubiquitination and degradation. Regnase-1 was reexpressed in IL-1R- or TLR-activated cells after a period of lower expression. Regnase-1 mRNA was negatively regulated by regnase-1 itself via a stem-loop region present in the regnase-1 3' untranslated region. Our data demonstrate that the IKK complex phosphorylates not only IκBα, thereby activating transcription, but also regnase-1, thereby releasing a 'brake' on IL-6 mRNA expression.


Assuntos
Citocinas/genética , Quinase I-kappa B/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Receptores de Interleucina-1/metabolismo , Ribonucleases/metabolismo , Receptores Toll-Like/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-6/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Ligação Proteica
3.
J Hum Genet ; 68(10): 699-704, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37308567

RESUMO

Although chronic kidney disease (CKD) is recognized as a major public health concern, effective treatment strategies have yet to be developed. Identification and validation of drug targets are key issues in the development of therapeutic agents for CKD. Uric acid (UA), a major risk factor for gout, has also been suggested to be a risk factor for CKD, but the efficacy of existing urate-lowering therapies for CKD is controversial. We focused on five uric acid transporters (ABCG2, SLC17A1, SLC22A11, SLC22A12, SLC2A9) as potential drug targets and evaluated the causal association between serum UA levels and estimated glomerular filtration rate (eGFR) using single-SNP Mendelian Randomization. The results showed a causal association between genetically predicted changes in serum UA levels and eGFR when genetic variants were selected from the SLC2A9 locus. Estimation based on a loss-of-function mutation (rs16890979) showed that the changes in eGFR per unit increase in serum UA level was -0.0082 ml/min/1.73 m2 (95% CI -0.014 to -0.0025, P = 0.0051). These results indicate that SLC2A9 may be a novel drug target for CKD that preserves renal function through its urate-lowering effect.


Assuntos
Gota , Transportadores de Ânions Orgânicos , Insuficiência Renal Crônica , Humanos , Ácido Úrico , Análise da Randomização Mendeliana , Gota/genética , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Fatores de Risco , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/genética
4.
Biol Pharm Bull ; 46(9): 1223-1230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661402

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation and the destruction of bone and cartilage in affected joints. One of the unmet medical needs in the treatment of RA is to effectively prevent the structural destruction of joints, especially bone, which progresses because of resistance to conventional drugs that mainly have anti-inflammatory effects, and directly leads to a decline in the QOL of patients. We previously developed a novel and orally available type II kinase inhibitor of colony-stimulating factor-1 receptor (CSF1R), JTE-952. CSF1R is specifically expressed by monocytic-lineage cells, including bone-resorbing osteoclasts, and is important for promoting the differentiation and proliferation of osteoclasts. In the present study, we investigated the therapeutic effect of JTE-952 on methotrexate (MTX)-refractory joint destruction in a clinically established adjuvant-induced arthritis rat model. JTE-952 did not suppress paw swelling under inflammatory conditions, but it inhibited the destruction of joint structural components including bone and cartilage in the inflamed joints. In addition, decreased range of joint motion and mechanical hyperalgesia after disease onset were suppressed by JTE-952. These results suggest that JTE-952 is expected to prevent the progression of the structural destruction of joints and its associated effects on joint motion and pain by inhibiting CSF1/CSF1R signaling in RA pathology, which is resistant to conventional disease-modifying anti-rheumatic drugs such as MTX.


Assuntos
Antineoplásicos , Artrite Reumatoide , Animais , Ratos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Fator Estimulador de Colônias de Macrófagos , Qualidade de Vida , Artrite Reumatoide/tratamento farmacológico , Receptores Proteína Tirosina Quinases
5.
J Allergy Clin Immunol ; 148(3): 858-866, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33609627

RESUMO

BACKGROUND: Sensory nerves regulate cutaneous local inflammation indirectly through induction of pruritus and directly by acting on local immune cells. The underlying mechanisms for how sensory nerves influence cutaneous acquired immune responses remain to be clarified. OBJECTIVE: This study aimed to explore the effect of peripheral nerves on cutaneous immune cells in cutaneous acquired immune responses. METHODS: We analyzed contact hypersensitivity (CHS) responses as a murine model of delayed-type hypersensitivity in absence or presence of resiniferatoxin-induced sensory nerve denervation. We conducted ear thickness measurements, flow cytometric analyses, and mRNA expression analyses in CHS. RESULTS: CHS responses were attenuated in mice that were denervated during the sensitization phase of CHS. By screening neuropeptides, we found that pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA expression was decreased in the dorsal root ganglia after denervation. Administration of PACAP restored attenuated CHS response in resiniferatoxin-treated mice, and pharmacological inhibition of PACAP suppressed CHS. Flow cytometric analysis of skin-draining lymph nodes showed that cutaneous dendritic cell migration and maturation were reduced in both denervated mice and PACAP antagonist-treated mice. The expression of chemokine receptors CCR7 and CXCR4 of dendritic cell s was enhanced by addition of PACAP in vitro. CONCLUSION: These findings indicate that a neuropeptide PACAP promotes the development of CHS responses by inducing cutaneous dendritic cell functions during the sensitization phase.


Assuntos
Dermatite de Contato/imunologia , Células de Langerhans/imunologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/imunologia , Animais , Denervação , Dermatite de Contato/genética , Diterpenos/administração & dosagem , Feminino , Gânglios Espinais/fisiologia , Haptenos/administração & dosagem , Linfonodos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neurotoxinas/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores CCR7/imunologia , Receptores CXCR4/imunologia , Canais de Cátion TRPV
6.
Biol Pharm Bull ; 43(12): 1884-1892, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268706

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and structural destruction of the joints. Bone damage occurs in an early stage after onset and osteoclast activation plays a substantial role in its progression. Colony stimulating factor 1 receptor (CSF1R) is a receptor protein tyrosine kinase specifically expressed in monocytic-lineage cells such as macrophages and osteoclasts. Here, we investigated the effect of JTE-952, a novel CSF1R tyrosine kinase inhibitor, on osteoclast formation in vitro and on bone destruction in a mouse model of collagen-induced arthritis. JTE-952 completely inhibited osteoclast differentiation from human monocytes, with an IC50 of 2.8 nmol/L, and reduced osteoclast formation from the synovial cells of RA patients. Detectable levels of colony stimulating factor 1 (CSF1), a ligand of CSF1R, were observed in the synovial tissues of the arthritis model, similar to those observed in the pathology of human RA. JTE-952 significantly suppressed increases in the bone destruction score, the number of tartrate-resistant-acid-phosphatase-positive cells, and the severity of arthritis in the model mice. We also examined the efficacy of JTE-952 combined with methotrexate. This combination therapy more effectively reduced the severity of bone destruction and arthritis than monotherapy with either agent alone. In summary, JTE-952 potently inhibited human osteoclast formation in vitro and suppressed bone destruction in an experimental arthritis model, especially when combined with methotrexate. These results indicate that JTE-952 should strongly inhibit bone destruction and joint inflammation in RA patients and effectively prevent the progression of the structural destruction of joints.


Assuntos
Artrite Experimental/tratamento farmacológico , Azetidinas/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Azetidinas/farmacologia , Densidade Óssea/fisiologia , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Osteoclastos/metabolismo , Osteoclastos/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
7.
Biol Pharm Bull ; 43(2): 325-333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32009119

RESUMO

Colony stimulating factor 1 (CSF1) receptor (CSF1R) is a receptor protein-tyrosine kinase specifically expressed in monocyte-lineage cells, such as monocytes and macrophages. In this study, we characterized the pharmacological properties of an azetidine compound, JTE-952 ((2S)-3-{[2-({3-[4-(4-cyclopropylbenzyloxy)-3-methoxyphenyl]azetidine-1-yl}carbonyl)pyridin-4-yl]methoxy}propane-1,2-diol), which is a novel CSF1R tyrosine kinase inhibitor. JTE-952 potently inhibited human CSF1R kinase activity, with a half maximal inhibitory concentration of 11.1 nmol/L, and inhibited the phosphorylation of CSF1R in human macrophages and the CSF1-induced proliferation of human macrophages. It also inhibited human tropomyosin-related kinase A activity, but only at concentrations 200-fold higher than that required to inhibit the activity of CSF1R in inducing the proliferation of human macrophages. JTE-952 displayed no marked inhibitory activity against other kinases. JTE-952 potently inhibited lipopolysaccharide-induced proinflammatory cytokine production by human macrophages and in whole blood. JTE-952 (≥3 mg/kg given orally) also significantly attenuated the CSF1-induced priming of lipopolysaccharide-induced tumor necrosis factor-alpha production in mice and arthritis severity in a mouse model of collagen-induced arthritis. Taken together, these results indicate that JTE-952 is an orally available compound with potent and specific inhibitory activity against CSF1R, both in vitro and in vivo. JTE-952 is a potentially clinically useful agent for various human inflammatory diseases, including rheumatoid arthritis.


Assuntos
Azetidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Azetidinas/farmacocinética , Células Cultivadas , Citocinas/sangue , Citocinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Ratos Endogâmicos Lew , Receptor trkA/metabolismo
8.
J Allergy Clin Immunol ; 136(3): 667-677.e7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26115905

RESUMO

BACKGROUND: Barrier disruption and the resulting continuous exposure to allergens are presumed to be responsible for the development of atopic dermatitis (AD). However, the mechanism through which skin barrier function is disrupted in patients with AD remains unclear. OBJECTIVES: Taking into account the fact that the TH2 milieu impairs keratinocyte terminal differentiation, we sought to clarify our hypothesis that the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway plays a critical role in skin barrier function and can be a therapeutic target for AD. METHODS: We analyzed the mechanism of keratinocyte differentiation using a microarray and small interfering RNA targeting STATs. We studied the effect of the JAK inhibitor JTE-052 on keratinocyte differentiation using the human skin equivalent model and normal human epidermal keratinocytes. We applied topical JAK inhibitor onto NC/Nga mice, dry skin model mice, and human skin grafted to immunocompromised mice. RESULTS: IL-4 and IL-13 downregulated genes involved in keratinocyte differentiation. STAT3 and STAT6 are involved in keratinocyte differentiation and chemokine production by keratinocytes, respectively. Topical application of the JAK inhibitor suppressed STAT3 activation and improved skin barrier function, permitting increases in levels of terminal differentiation proteins, such as filaggrin, and natural moisturizing factors in models of AD and dry skin and in human skin. CONCLUSION: STAT3 signaling is a key element that regulates keratinocyte differentiation. The JAK inhibitor can be a new therapeutic tool for the treatment of disrupted barrier function in patients with AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Hospedeiro Imunocomprometido , Queratinócitos/efeitos dos fármacos , Fator de Transcrição STAT3/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Dermatite Atópica/genética , Dermatite Atópica/patologia , Modelos Animais de Doenças , Proteínas Filagrinas , Regulação da Expressão Gênica , Humanos , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/imunologia , Queratinócitos/imunologia , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT6/antagonistas & inibidores , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/imunologia , Transdução de Sinais , Transplante de Pele , Pele Artificial , Transplante Heterólogo
9.
Inflamm Res ; 64(1): 41-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25387665

RESUMO

OBJECTIVE: To evaluate the pharmacological properties of JTE-052, a novel Janus kinase (JAK) inhibitor. METHODS: The JAK inhibitory activity of JTE-052 was evaluated using recombinant human enzymes. The inhibitory effects on cytokine signaling pathways were evaluated using primary human inflammatory cells. The in vivo efficacy and potency of JTE-052 were examined in a mouse interleukin (IL)-2-induced interferon (IFN)-γ production model and a rat collagen-induced arthritis model. RESULTS: JTE-052 inhibited the JAK1, JAK2, JAK3, and tyrosine kinase (Tyk)2 enzymes in an adenosine triphosphate (ATP)-competitive manner and inhibited cytokine signaling evoked by IL-2, IL-6, IL-23, granulocyte/macrophage colony-stimulating factor, and IFN-α. JTE-052 inhibited the activation of inflammatory cells, such as T cells, B cells, monocytes, and mast cells, in vitro. Oral dosing of JTE-052 resulted in potent suppression of the IL-2-induced IFN-γ production in mice with an ED50 value of 0.24 mg/kg, which was more potent than that of tofacitinib (ED50 = 1.1 mg/kg). In the collagen-induced arthritis model, JTE-052 ameliorated articular inflammation and joint destruction even in therapeutic treatments where methotrexate was ineffective. CONCLUSIONS: The present results indicate that JTE-052 is a highly potent JAK inhibitor, and represents a candidate anti-inflammatory agent for suppressing various types of inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/prevenção & controle , Inflamação/prevenção & controle , Janus Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Antirreumáticos/uso terapêutico , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Células Cultivadas , Colágeno/efeitos adversos , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-2/efeitos adversos , Mastócitos/efeitos dos fármacos , Mastócitos/patologia , Metotrexato/uso terapêutico , Camundongos , Camundongos Endogâmicos DBA , Ratos , Ratos Endogâmicos Lew , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia
10.
BMC Musculoskelet Disord ; 16: 339, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26546348

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to joint destruction, disability, and decreased quality of life (QOL). Inhibition of Janus kinase (JAK) signaling ameliorates articular inflammation and joint destruction in animal models of RA, but its effects on behaviors indicating well-being are poorly understood. In this study, we evaluated the effect of JAK inhibition on spontaneous locomotor activity in rats with adjuvant-induced arthritis, a rodent model of RA. METHODS: Arthritis was induced in male Lewis rats by a single subcutaneous injection of Freund's complete adjuvant. The novel JAK inhibitor JTE-052 was orally administered for 7 days after the onset of arthritis. RESULTS: Induction of arthritis suppressed the spontaneous locomotor activity of the rats. Administration of JTE-052 completely improved the spontaneous locomotor activity, with partial reductions in articular inflammation and joint destruction. Hyperalgesia and motor functions were also improved, but the efficacy was not complete. However, serum interleukin (IL)-6 levels were completely decreased at 4 h after administration of the first dose of JTE-052. CONCLUSIONS: This study demonstrated that JAK inhibition improved the spontaneous locomotor activity of rats with adjuvant-induced arthritis, in association with amelioration of pain and physical dysfunction as a consequence of suppression of joint inflammation. Moreover, although further studies are needed, there was possible participation of IL-6 downregulation in the improvement of locomotor activity by JAK inhibition.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Adjuvante de Freund , Janus Quinases/antagonistas & inibidores , Atividade Motora/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Artrite Experimental/induzido quimicamente , Artrite Experimental/enzimologia , Artrite Experimental/fisiopatologia , Artrite Experimental/psicologia , Biomarcadores/sangue , Relação Dose-Resposta a Droga , Esquema de Medicação , Hiperalgesia/enzimologia , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Mediadores da Inflamação/sangue , Interleucina-6/sangue , Janus Quinases/metabolismo , Articulações/efeitos dos fármacos , Articulações/enzimologia , Articulações/fisiopatologia , Masculino , Inibidores de Proteínas Quinases/administração & dosagem , Ratos Endogâmicos Lew , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
11.
Ren Fail ; 36(8): 1291-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24975675

RESUMO

Hyperphosphatemia is a risk factor for arterial calcification contributing to the high-cardiovascular mortality in patients with chronic kidney disease (CKD). Ferric citrate hydrate (JTT-751) is being developed as a treatment for hyperphosphatemia with chronic renal failure and has shown a serum phosphorus-lowering effect in CKD patients. In this study, we evaluated the combination effect of JTT-751 with the phosphorus absorption-reducing effect of calcium carbonate and compared phosphorus absorption-reducing efficacy between three phosphate binders including JTT-751. Normal rats were fed a diet containing either 1% calcium carbonate, 1% JTT-751 or 1% JTT-751 with 1% calcium carbonate, for 7 days. Both 1% calcium carbonate and 1% JTT-751 alone reduced urinary phosphorus excretion, and the combined treatment reduced it more than each single-treatment, without clearly influencing calcium or iron-metabolism. Next, normal rats were fed a diet containing either 0.3, 1 and 3% lanthanum carbonate or 2.3% JTT-751, for 7 days. Either 3% lanthanum carbonate or 2.3% JTT-751 reduced urinary phosphorus excretion. Finally, we compared the reduced amount of urinary phosphorus excretion per dose of compound, of which JTT-751 is comparable to that of calcium carbonate and is greater than that of the lanthanum carbonate. In conclusion, JTT-751 showed an additive effect on the phosphorus absorption-reducing effect of calcium carbonate without influencing calcium- and iron-metabolism, and had a phosphorus absorption-reducing efficacy comparable to or greater than other existing phosphate binders.


Assuntos
Carbonato de Cálcio/farmacologia , Compostos Férricos/farmacologia , Lantânio/farmacologia , Fósforo/metabolismo , Animais , Absorção Intestinal/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
12.
J Urol ; 189(3): 1137-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22999996

RESUMO

PURPOSE: We evaluated the role of TRPV1 in bladder overactivity based on afferent nerve firing and urodynamic parameters using the selective TRPV1 antagonist JTS-653. MATERIALS AND METHODS: We evaluated the effects of JTS-653 on the increased pelvic nerve discharge and intravesical pressure induced by intravesical infusion of 100 µM capsaicin in anesthetized rats. The effects of JTS-653 on the urodynamic parameters of bladder overactivity induced by intravesical infusion of 30 nM resiniferatoxin or 0.2% acetic acid, or on normal bladder activity were evaluated by cystometry in conscious rats. The effects of JTS-653 on carbachol induced contraction were investigated using bladder muscle strips. RESULTS: JTS-653 significantly suppressed the capsaicin induced increase in nerve discharge and intravesical pressure. Intravesical infusion of resiniferatoxin or acetic acid decreased the intercontraction interval and voided volume. JTS-653 significantly increased the intercontraction interval and voided volume in rats with resiniferatoxin or acetic acid induced bladder overactivity without affecting maximal voiding pressure. The antimuscarinic agent propiverine significantly decreased maximal voiding pressure but did not affect the intercontraction interval or voided volume in rats with acetic acid induced bladder overactivity. In normal rats JTS-653 showed no significant effects on the intercontraction interval, voided volume or maximal voiding pressure. JTS-653 did not affect carbachol induced contraction of the bladder muscle. CONCLUSIONS: Our findings suggest that TRPV1 is involved in bladder overactivity via afferent nerve activation but it is not associated with normal voiding function. A TRPV1 antagonist would be a useful drug for bladder overactivity with a different pharmacological profile than antimuscarinic agents.


Assuntos
Benzoxazinas/administração & dosagem , Neurônios Aferentes/efeitos dos fármacos , Piridinas/administração & dosagem , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária/inervação , Micção/efeitos dos fármacos , Administração Intravesical , Animais , Modelos Animais de Doenças , Feminino , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/antagonistas & inibidores , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Bexiga Urinária Hiperativa/induzido quimicamente , Micção/fisiologia
13.
Am J Nephrol ; 37(4): 346-58, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23548309

RESUMO

BACKGROUND/AIMS: Ferric citrate hydrate (JTT-751) is being developed as a treatment for hyperphosphatemia in chronic kidney disease patients, and shows serum phosphorus-reducing effects on hyperphosphatemia in hemodialysis patients. We examined whether JTT-751 could reduce phosphorus absorption in normal rats and prevent the progression of ectopic calcification, secondary hyperparathyroidism and bone abnormalities in chronic renal failure (CRF) rats. METHODS: Normal rats were fed a diet containing 0.3, 1 or 3% JTT-751 for 7 days. The effects of JTT-751 on phosphorus absorption were evaluated with fecal and urinary phosphorus excretion. Next, a CRF model simulating hyperphosphatemia was induced by feeding rats a 0.75% adenine diet. After 21 days of starting the adenine diet feeding, 1 or 3% JTT-751 was administered for 35 days by dietary admixture. The serum phosphorus levels and mineral parameters were measured. Calcification in the aorta was examined biochemically and histopathologically. Hyperparathyroidism and bone abnormalities were evaluated by histopathological analysis of the parathyroid and femur, respectively. RESULTS: In normal rats, JTT-751 increased fecal phosphorus excretion and reduced phosphorus absorption and urinary phosphorus excretion. In CRF rats, JTT-751 reduced serum phosphorus levels, the calcium-phosphorus product and calcium content in the aorta. Serum intact parathyroid hormone levels and the incidence and severity of parathyroid hyperplasia were also decreased. JTT-751 reduced femoral bone fibrosis, porosity and osteoid formation. CONCLUSIONS: JTT-751 could bind with phosphate in the gastrointestinal tract, increase fecal phosphorus excretion and reduce phosphorus absorption. JTT-751 could prevent the progression of ectopic calcification, secondary hyperparathyroidism and bone abnormalities in rats.


Assuntos
Compostos Férricos/farmacologia , Hiperparatireoidismo Secundário/prevenção & controle , Fosfatos/metabolismo , Calcificação Vascular/prevenção & controle , Animais , Aorta/metabolismo , Cálcio/metabolismo , Hiperparatireoidismo Secundário/patologia , Hiperfosfatemia/prevenção & controle , Masculino , Glândulas Paratireoides/patologia , Ratos , Ratos Sprague-Dawley , Calcificação Vascular/patologia
14.
J Pharmacol Sci ; 122(2): 128-37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23728381

RESUMO

Chronic pain refractory to non-steroidal anti-inflammatory drugs (NSAIDs) is a major problem and drugs for such pain are needed. Many studies suggest that transient receptor potential vanilloid type 1 (TRPV1) is associated with NSAID-refractory chronic pain. Therefore, we investigated the involvement of TRPV1 in NSAID-refractory chronic pain using experimental models for NSAID-refractory chronic pain reflecting severe arthritic and postherpetic pain. The selective TRPV1 antagonist JTS-653 {(3S)-3-(hydroxymethyl)-4-(5-methylpyridin-2-yl)-N-[6-(2,2,2-trifluoroethoxy)pyridin-3-yl]-3,4-dihydro-2H-benzo[b][1,4]oxazine-8-carboxamide} reversed mechanical hyperalgesia on day 7 after injection of complete-Freund-adjuvant into the hindpaw in rats at 0.3 mg/kg, whereas indomethacin showed no effect. JTS-653 reduced chronic pain at 0.3 mg/kg in herpes simplex virus-1-inoculated mice that has been reported as NSAID-refractory pain. JTS-653 partially attenuated mechanical hyperalgesia in the L5 spinal nerve ligation model in rats at 0.3 mg/kg, whereas indomethacin showed no effect. Both JTS-653 and indomethacin reduced formalin-induced pain in the second phase, whereas they showed no effect in the first phase. JTS-653 did not affect the nociception of noxious thermal and mechanical stimuli and motor coordination in normal rats. These findings demonstrate the TRPV1 involvement in NSAID-refractory chronic pain reflecting severe arthritic and postherpetic pain. TRPV1 antagonists would be useful for the treatment of NSAID-refractory chronic pain.


Assuntos
Analgésicos/administração & dosagem , Benzoxazinas/administração & dosagem , Neuralgia Pós-Herpética/tratamento farmacológico , Neuralgia Pós-Herpética/genética , Dor/tratamento farmacológico , Dor/genética , Piridinas/administração & dosagem , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/fisiologia , Administração Oral , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides , Benzoxazinas/farmacologia , Doença Crônica , Modelos Animais de Doenças , Masculino , Camundongos , Terapia de Alvo Molecular , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença
15.
ACS Omega ; 8(26): 23925-23935, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426216

RESUMO

We have developed an innovative system, AI QM Docking Net (AQDnet), which utilizes the three-dimensional structure of protein-ligand complexes to predict binding affinity. This system is novel in two respects: first, it significantly expands the training dataset by generating thousands of diverse ligand configurations for each protein-ligand complex and subsequently determining the binding energy of each configuration through quantum computation. Second, we have devised a method that incorporates the atom-centered symmetry function (ACSF), highly effective in describing molecular energies, for the prediction of protein-ligand interactions. These advancements have enabled us to effectively train a neural network to learn the protein-ligand quantum energy landscape (P-L QEL). Consequently, we have achieved a 92.6% top 1 success rate in the CASF-2016 docking power, placing first among all models assessed in the CASF-2016, thus demonstrating the exceptional docking performance of our model.

16.
J Pharmacol Exp Ther ; 342(2): 520-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22588258

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) activation in peripheral sensory nerve is known to be associated with various pain-related diseases, thus TRPV1 has been the focus as a target for drug discovery. In this study, we characterized the pharmacological profiles of (3S)-3-(hydroxymethyl)-4-(5-methylpyridin-2-yl)-N-[6-(2,2,2-trifluoroethoxy)pyridin-3-yl]-3,4-dihydro-2H-benzo[b][1,4]oxazine-8-carboxamide (JTS-653), a novel TRPV1 antagonist. JTS-653 displaced [(3)H]resiniferatoxin binding to human and rat TRPV1. JTS-653 competitively antagonized the capsaicin-induced activation of human TRPV1 with pA(2) values of 10.1. JTS-653 also inhibited proton-induced activation of human and rat TRPV1 with IC(50) values of 0.320 and 0.347 nM, respectively. Electrophysiological studies indicated that JTS-653 blocked heat-induced inward currents in rat TRPV1 with IC(50) values of 1.4 nM. JTS-653 showed weak or no inhibitory effects on other TRP channels, receptors, and enzymes. JTS-653 significantly prevented capsaicin-induced mechanical hyperalgesia at 1 mg/kg p.o. and attenuated carrageenan-induced mechanical hyperalgesia at 0.3 mg/kg p.o. JTS-653 significantly attenuated carrageenan-induced thermal hyperalgesia at 0.1 mg/kg p.o. and fully reversed at 0.3 mg/kg p.o. without affecting the volume of the carrageenan-treated paw. JTS-653 showed a transient increase of body temperature at 0.3 mg/kg p.o. These results indicated that JTS-653 is a highly potent and selective TRPV1 antagonist in vitro and in vivo and suggested that JTS-653 is one of the most potent TRPV1 antagonists. The profiles of JTS-653, high potency in vivo and transient hyperthermia, seem to be associated with polymodal inhibition of TRPV1 activation.


Assuntos
Benzoxazinas/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Hiperalgesia/tratamento farmacológico , Piridinas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Temperatura Corporal/efeitos dos fármacos , Capsaicina/farmacologia , Carragenina/farmacologia , Células HEK293 , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/metabolismo
17.
J Bone Miner Metab ; 30(3): 312-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22038286

RESUMO

The Spontaneously Diabetic Torii-Lepr (fa) (SDT-fa/fa) rat is a new model of obese type 2 diabetes. The SDT-fa/fa rat shows obesity and hyperglycemia at a young age compared to the Spontaneously Diabetic Torii (SDT-+/+) rat; however, bone abnormalities in the SDT-fa/fa rat have not been investigated. The objective of the present study was to investigate the effects of obese type 2 diabetes on bone turnover, bone mass, and bone strength in the SDT-fa/fa rat. Sprague-Dawley rats were used as control animals, and SDT-+/+ rats were used as non-obese type 2 diabetic rats. Serum osteocalcin and urine deoxypyridinoline levels were decreased in SDT-fa/fa rats compared to control rats at a young age. SDT-fa/fa rats showed decreases in bone mineral density and bone mineral content of the whole tibia, and shortening of the tibia and femur compared to control and SDT-+/+ rats. Deterioration in bone geometrical properties of the femur midshaft such as cortical thickness and minimum moment of inertia, was observed in SDT-fa/fa rats compared to control and SDT-+/+ rats. Furthermore, trabecular bone volume of the distal femur was decreased in SDT-fa/fa rats compared to control rats. These negative effects on bone in SDT-fa/fa rats caused severe decreases in maximum load, stiffness, and energy absorption of the femur. In addition, serum levels of homocysteine, a candidate for bone fragility markers, were elevated in SDT-fa/fa rats compared to control and SDT-+/+ rats. In conclusion, the SDT-fa/fa rat may be a useful model to investigate bone abnormalities in obese type 2 diabetes.


Assuntos
Remodelação Óssea/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Fêmur/patologia , Receptores para Leptina/genética , Tíbia/patologia , Aminoácidos/urina , Animais , Glicemia/metabolismo , Peso Corporal , Densidade Óssea , Cálcio/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/urina , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/urina , Fêmur/diagnóstico por imagem , Fêmur/fisiopatologia , Homocisteína/sangue , Imageamento Tridimensional , Masculino , Tamanho do Órgão , Osteocalcina/sangue , Radiografia , Ratos , Tíbia/diagnóstico por imagem , Tíbia/fisiopatologia
18.
Eur J Pharmacol ; 898: 173990, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33657422

RESUMO

Anemia with inflammation-induced defective iron utilization is a pathological condition observed in patients suffering from chronic kidney disease (CKD) or chronic inflammatory disease. There is no reasonable treatment for these conditions, because the effects of erythropoiesis stimulating agents (ESAs) or iron supplementation in the treatment of anemia are insufficient. JTZ-951 (enarodustat) has been characterized as a novel, orally bioavailable inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PH), and has been developed as a novel therapeutic agent for anemia with CKD. In this study, the effects of JTZ-951 on iron utilization during erythropoiesis and on anemia of inflammation were compared with those of recombinant human erythropoietin (rHuEPO) using normal rat and rat model of anemia of inflammation. In normal rats, under conditions in which JTZ-951 and rHuEPO showed similar erythropoietic effect, repeated doses of JTZ-951 induced erythropoiesis while retaining the hemoglobin content in red blood cells, while administration of rHuEPO resulted in decrease in some erythrocyte-related parameters. As for iron-related parameters during erythropoiesis, JTZ-951 exhibited more efficient iron utilization compared to rHuEPO. A single dose of JTZ-951 resulted in decrease in hepcidin expression observed within 24 h after administration, but a single dose of rHuEPO did not. In a rat model of anemia of inflammation (also known as a model with functional iron-deficiency), JTZ-951 showed erythropoietic effect, in contrast with rHuEPO. These results suggest that, unlike rHuEPO, JTZ-951 stimulates erythropoiesis by increasing iron utilization, and improves anemia of inflammation.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Eritrócitos/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Hematínicos/farmacologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Ferro/sangue , Glicinas N-Substituídas/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Anemia Ferropriva/sangue , Anemia Ferropriva/enzimologia , Anemia Ferropriva/etiologia , Animais , Artrite Experimental/complicações , Biomarcadores/sangue , Eritrócitos/enzimologia , Feminino , Hepcidinas/genética , Hepcidinas/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Ratos Endogâmicos Lew , Proteínas Recombinantes/farmacologia
19.
Eur J Pharmacol ; 895: 173880, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476654

RESUMO

Classic glucocorticoids have been prescribed for various inflammatory diseases, such as rheumatoid arthritis, due to their outstanding anti-inflammatory effects. However, glucocorticoids cause numerous unwanted side effects, including osteoporosis and diabetes. Hence, selective glucocorticoid receptor modulators (SGRMs), which retain anti-inflammatory effects with minimized side effects, are among the most anticipated drugs in the clinical field. The assumption is that there are two major mechanisms of action via glucocorticoid receptors, transrepression (TR) and transactivation (TA). In general, anti-inflammatory effects of glucocorticoids are largely due to TR, while the side effects associated with glucocorticoids are mostly mediated through TA. We previously reported that JTP-117968, a novel SGRM, maintained partial TR activity while remarkably reducing the TA activity. In this study, we investigated the anti-inflammatory effect of JTP-117968 on a lipopolysaccharide (LPS) challenge model and collagen-induced arthritis (CIA) model in mice. Meanwhile, we tested the effect of JTP-117968 on the bone mineral density (BMD) in mouse femur to evaluate the side effect. Based on the evaluation, JTP-117968 reduced the plasma levels of tumor necrosis factor α induced by LPS challenge in mice significantly. Remarkably, CIA development was suppressed by JTP-117968 comparably with prednisolone and PF-802, an active form of fosdagrocorat that has been developed clinically as an orally available SGRM. Strikingly, the side effect of JTP-117968 on mouse femoral BMD was much lower than those of PF-802 and prednisolone. Therefore, JTP-117968 has attractive potential as a new therapeutic option against inflammatory diseases with minimized side effects compared to classic glucocorticoids.


Assuntos
Aminopiridinas/farmacologia , Anti-Inflamatórios/farmacologia , Artrite Experimental/prevenção & controle , Densidade Óssea/efeitos dos fármacos , Glucocorticoides/farmacologia , Articulações/efeitos dos fármacos , Fenantrolinas/farmacologia , Receptores de Glucocorticoides/agonistas , Aminopiridinas/toxicidade , Animais , Anti-Inflamatórios/toxicidade , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Feminino , Glucocorticoides/toxicidade , Humanos , Mediadores da Inflamação/sangue , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Articulações/metabolismo , Articulações/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Fenantrolinas/toxicidade , Receptores de Glucocorticoides/metabolismo , Fator de Necrose Tumoral alfa/sangue
20.
J Vet Med Sci ; 82(3): 379-386, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-31996496

RESUMO

Ferric citrate is an oral iron-based phosphate binder, being known to affect iron status and improve iron deficiency anemia (IDA) in chronic kidney disease (CKD) patients. We examined whether oral administration of ferric citrate could change iron status and improve anemia without affecting phosphorus metabolism in iron deficiency anemia rats. In Normal rat study, normal rats were fed a diet containing 0.3 or 3% ferric citrate for 11 days for setting the dose and administration period of ferric citrate. The effects of ferric citrate on iron status- and phosphorus metabolism-related parameters were evaluated using blood and urine samples. Next, an iron deficiency anemia was induced by feeding iron-depleted diet in rats. After 7 days of starting the iron-depleted diet, 0.3% ferric citrate was administered for 7 days by dietary admixture. Iron status- and phosphorus metabolism-related parameters were evaluated with blood and urine samples. In Normal rat study, 3% ferric citrate treatment increased serum iron level and transferrin saturation (TSAT), and decreased serum phosphorus level, intact fibroblast growth factor 23 (iFGF23) level, and urinary phosphorus excretion, but 0.3% ferric citrate treatment showed no effects. On the other hand, in Iron deficiency anemia rat study, 0.3% ferric citrate treatment increased iron status-related parameters and improved anemia, but did not show any apparent changes in phosphorus metabolism-related parameters. In conclusion, ferric citrate could have hematopoietic effects without affecting phosphorus metabolism, and could be a potential option for the treatment of IDA in patients without CKD.


Assuntos
Anemia Ferropriva/dietoterapia , Compostos Férricos/farmacologia , Fósforo/metabolismo , Administração Oral , Animais , Compostos Férricos/administração & dosagem , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Deficiências de Ferro , Masculino , Fósforo/sangue , Fósforo/urina , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA