Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(7): e2023481120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-37053554

RESUMO

Monosynaptic tracing using rabies virus is an important technique in neuroscience, allowing brain-wide labeling of neurons directly presynaptic to a targeted neuronal population. A 2017 article reported the development of a noncytotoxic version-a major advance-based on attenuating the rabies virus by the addition of a destabilization domain to the C terminus of a viral protein. However, this modification did not appear to hinder the ability of the virus to spread between neurons. We analyzed two viruses provided by the authors and show here that both were mutants that had lost the intended modification, explaining the paper's paradoxical results. We then made a virus that actually did have the intended modification in at least the majority of virions and found that it did not spread efficiently under the conditions described in the original paper, namely, without an exogenous protease being expressed in order to remove the destabilization domain. We found that it did spread when the protease was supplied, although this also appeared to result in the deaths of most source cells by 3 wk postinjection. We conclude that the new approach is not robust but that it could become a viable technique given further optimization and validation.


Assuntos
Vírus da Raiva , Raiva , Humanos , Vírus da Raiva/metabolismo , Neurônios/metabolismo , Proteínas Virais/metabolismo , Encéfalo/metabolismo , Peptídeo Hidrolases/metabolismo
2.
PLoS Genet ; 18(6): e1010241, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35648791

RESUMO

Meiosis is a hallmark event in germ cell development that accompanies sequential events executed by numerous molecules. Therefore, characterization of these factors is one of the best strategies to clarify the mechanism of meiosis. Here, we report tripartite motif-containing 41 (TRIM41), a ubiquitin ligase E3, as an essential factor for proper meiotic progression and fertility in male mice. Trim41 knockout (KO) spermatocytes exhibited synaptonemal complex protein 3 (SYCP3) overloading, especially on the X chromosome. Furthermore, mutant mice lacking the RING domain of TRIM41, required for the ubiquitin ligase E3 activity, phenocopied Trim41 KO mice. We then examined the behavior of mutant TRIM41 (ΔRING-TRIM41) and found that ΔRING-TRIM41 accumulated on the chromosome axes with overloaded SYCP3. This result suggested that TRIM41 exerts its function on the chromosome axes. Our study revealed that Trim41 is essential for preventing SYCP3 overloading, suggesting a TRIM41-mediated mechanism for regulating chromosome axis protein dynamics during male meiotic progression.


Assuntos
Proteínas Nucleares , Complexo Sinaptonêmico , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Masculino , Meiose/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Espermatócitos/metabolismo , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
Genes Cells ; 28(11): 811-820, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37723847

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a renal disorder caused by mutations in the PKD2 gene, which encodes polycystin-2/Pkd2, a transient receptor potential channel. The precise role of Pkd2 in cyst formation remains unclear. The fission yeast Schizosaccharomyces pombe has a putative transient receptor potential channel, Pkd2, which shares similarities with human Pkd2. In this study, truncation analyses of fission yeast Pkd2 were conducted to investigate its localization and function. The results revealed that Pkd2 localizes not only to the plasma membrane but also to the endoplasmic reticulum (ER) in fission yeast. Furthermore, Pkd2 regulates calcium signaling in fission yeast, with the transmembrane domains of Pkd2 being sufficient for these processes. Specifically, the C-terminal region of Pkd2 plays a crucial role in the regulation of calcium signaling. Interestingly, human Pkd2 also localized to the ER and had some impact on calcium signaling in fission yeast. However, human Pkd2 failed to suppress the loss of fission yeast Pkd2. These findings indicate that hPkd2 may not completely substitute for cellular physiology of fission yeast Pkd2. This study provides insights into the localization and functional characteristics of Pkd2 in fission yeast, contributing to our understanding of the pathogenesis of ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Schizosaccharomyces , Canais de Potencial de Receptor Transitório , Humanos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Sinalização do Cálcio/genética , Mutação , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Retículo Endoplasmático/metabolismo
4.
PLoS Genet ; 17(5): e1009412, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33961623

RESUMO

Meiosis is a cell division process with complex chromosome events where various molecules must work in tandem. To find meiosis-related genes, we screened evolutionarily conserved and reproductive tract-enriched genes using the CRISPR/Cas9 system and identified potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis. In prophase I, Kctd19 deficiency did not affect synapsis or the DNA damage response, and chiasma structures were also observed in metaphase I spermatocytes of Kctd19 KO mice. However, spermatocytes underwent apoptotic elimination during the metaphase-anaphase transition. We were able to rescue the Kctd19 KO phenotype with an epitope-tagged Kctd19 transgene. By immunoprecipitation-mass spectrometry, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). Phenotyping of Zfp541 KO spermatocytes demonstrated XY chromosome asynapsis and recurrent DNA damage in the late pachytene stage, leading to apoptosis. In summary, our study reveals that KCTD19 associates with ZFP541 and HDAC1, and that both KCTD19 and ZFP541 are essential for meiosis in male mice.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Genes Essenciais , Meiose , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Anáfase , Animais , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Pareamento Cromossômico , Sequência Conservada , Dano ao DNA , Evolução Molecular , Fertilidade/genética , Histona Desacetilase 1/metabolismo , Masculino , Prófase Meiótica I , Metáfase , Camundongos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Estágio Paquíteno , Fenótipo , Espermátides/citologia , Espermatócitos/citologia , Espermatócitos/metabolismo , Testículo/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transgenes
5.
J Cell Sci ; 134(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34585727

RESUMO

Cilia and flagella are ancient structures that achieve controlled motor functions through the coordinated interaction based on microtubules and some attached projections. Radial spokes (RSs) facilitate the beating motion of these organelles by mediating signal transduction between dyneins and a central pair (CP) of singlet microtubules. RS complex isolation from Chlamydomonas axonemes enabled the detection of 23 radial spoke proteins (RSP1-RSP23), although the roles of some radial spoke proteins remain unknown. Recently, RSP15 has been reported to be bound to the stalk of RS2, but its homolog in mammals has not been identified. Herein, we show that Lrrc23 is an evolutionarily conserved testis-enriched gene encoding an RSP15 homolog in mice. We found that LRRC23 localizes to the RS complex within murine sperm flagella and interacts with RSPH3A and RSPH3B. The knockout of Lrrc23 resulted in male infertility due to RS disorganization and impaired motility in murine spermatozoa, whereas the ciliary beating was not significantly affected. These data indicate that LRRC23 is a key regulator that underpins the integrity of the RS complex within the flagella of mammalian spermatozoa, whereas it is dispensable in cilia. This article has an associated First Person interview with the first author of the paper.


Assuntos
Axonema , Proteínas do Citoesqueleto/metabolismo , Motilidade dos Espermatozoides , Animais , Axonema/metabolismo , Cílios/metabolismo , Proteínas do Citoesqueleto/genética , Dineínas/metabolismo , Fertilidade/genética , Flagelos/metabolismo , Masculino , Camundongos , Motilidade dos Espermatozoides/genética
6.
Blood Purif ; : 1-9, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36996766

RESUMO

INTRODUCTION: In this study, we examined the effect of switching dialysis membranes on the response to influenza virus vaccination in HD patients. METHODS: This study consisted of two phases. In phase 1, antibody titers were measured and compared between HD patients and healthy volunteers (HVs) before and after vaccination against influenza virus. Using antibody titers 4 weeks after vaccination, HD patients and HVs were classified according to seroconversion (i.e., antibody titers against all four strains were >20-fold) or non-seroconversion (i.e., antibody titer against at least one strain was <20-fold). In the phase 2, we examined whether the change in the dialysis membrane from a polysulfone (PS) to a polymethyl methacrylate (PMMA) membrane affected the response to vaccination in HD patients without seroconversion in response to the vaccine the previous year. Patients with seroconversion and non-seroconversion were classified as responders and nonresponders, respectively. Additionally, we compared clinical data. RESULTS: In the phase 1, 110 HD patients and 80 HVs were enrolled, and their seroconversion rates were 58.6% and 72.5%, respectively. In the phase 2, 20 HD patients without seroconversion in response to the vaccine the previous year were enrolled, and the dialyzer membrane was changed to PMMA 5 months before annual vaccination. After annual vaccination, 5 and 15 HD patients were categorized as responders and nonresponders, respectively. In the responders, ß2-microglobulin, white blood cell counts, platelet counts, and serum albumin levels (Alb) were all higher than in the nonresponders. CONCLUSION: The responsiveness to vaccination against influenza virus was lower in HD patients compared with HVs. Changing the dialysis membrane from PS to PMMA appeared to affect the response to vaccination in HD patients.

7.
Dev Growth Differ ; 64(1): 38-47, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34904222

RESUMO

Monoclonal antibodies have been applied in a wide range of biological and medical studies since the advent of cell fusion technology. Although cell fusion techniques have been improved by using myelomas and reagents, researchers still find it difficult to produce monoclonal antibodies because of the long protocols, high costs, and low efficiency of obtaining hybridomas. To solve these problems, we first developed an iliac lymph node method in 1995 using rats. In this method, an antigen emulsion is injected intramuscularly into the tail base, and then B lymphocytes are isolated from the enlarged iliac lymph nodes. This method is approximately 10 times more productive than the conventional spleen method. Here, we present further improvements to the iliac lymph node method to render it easily applicable in both mice and rats. We found that the frequency of hybridomas secreting specific antibodies was over five times higher using the electro cell fusion method than using the polyethylene glycol (PEG) fusion method. This frequency using the iliac lymph node method with electro cell fusion is at least 50 times higher than that using the traditional spleen method, thereby leading to the reduction in the number of mice or rats to be sacrificed. In addition, only a single injection for immunization is necessary for the iliac lymph node method, opposed to three for the spleen method. Therefore, this method is rapid, inexpensive, and ethical for producing monoclonal antibodies.


Assuntos
Anticorpos Monoclonais , Antígenos , Animais , Fusão Celular , Hibridomas , Linfonodos , Camundongos , Ratos
8.
Reprod Med Biol ; 21(1): e12452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386379

RESUMO

Purpose: Spermiogenesis, the process of deformation of sperm head morphology and flagella formation, is a phenomenon unique to sperm. Axonemal dynein light chain proteins are localized to sperm flagella and are known to be involved in sperm motility. Here, we focused on the gene axonemal dynein light chain domain containing 1 (Axdnd1) with the aim to determine the function of its protein product AXDND1. Methods: To elucidate the role of AXDND1 in spermatogenesis, we generated Axdnd1 knockout (KO) mice using the CRISPR/Cas9 system. The generated mice were subjected to fertility tests and analyzed by immunohistochemistry. Result: The Axdnd1 KO mouse exhibited sterility caused by impaired spermiogenesis during the elongation step as well as abnormal nuclear shaping and manchette, which are essential for spermiogenesis. Moreover, AXDND1 showed enriched testicular expression and was localized from the mid-pachytene spermatocytes to the early spermatids. Conclusion: Axdnd1 is essential for spermatogenesis in the mouse testes. These findings improve our understanding of spermiogenesis and related defects. According to a recent report, deleterious heterozygous mutations in AXDND1 were found in non-obstructive azoospermia (NOA) patients. Therefore, Axdnd1 KO mice could be used as a model system for NOA, which will greatly contribute to future NOA treatment studies.

9.
Glycobiology ; 31(5): 557-570, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33242079

RESUMO

Sialic acids are unique sugars with negative charge and exert various biological functions such as regulation of immune systems, maintenance of nerve tissues and expression of malignant properties of cancers. Alpha 2,6 sialylated N-glycans, one of representative sialylation forms, are synthesized by St6gal1 or St6gal2 gene products in humans and mice. Previously, it has been reported that St6gal1 gene is ubiquitously expressed in almost all tissues. On the other hand, St6gal2 gene is expressed mainly in the embryonic and perinatal stages of brain tissues. However, roles of St6gal2 gene have not been clarified. Expression profiles of N-glycans with terminal α2,6 sialic acid generated by St6gal gene products in the brain have never been directly studied. Using conventional lectin blotting and novel sialic acid linkage-specific alkylamidationmass spectrometry method (SALSA-MS), we investigated the function and expression of St6gal genes and profiles of their products in the adult mouse brain by establishing KO mice lacking St6gal1 gene, St6gal2 gene, or both of them (double knockout). Consequently, α2,6-sialylated N-glycans were scarcely detected in adult mouse brain tissues, and a majority of α2,6-sialylated glycans found in the mouse brain were O-linked glycans. The majority of these α2,6-sialylated O-glycans were shown to be disialyl-T antigen and sialyl-(6)T antigen by mass spectrometry analysis. Moreover, it was revealed that a few α2,6-sialylated N-glycans were produced by the action of St6gal1 gene, despite both St6gal1 and St6gal2 genes being expressed in the adult mouse brain. In the future, where and how sialylated O-linked glycoproteins function in the brain tissue remains to be clarified.


Assuntos
Encéfalo/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Sialiltransferases/genética , Animais , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sialiltransferases/deficiência , Sialiltransferases/metabolismo , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
10.
Dev Growth Differ ; 63(8): 439-447, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34432885

RESUMO

Recent advances in the CRISPR/Cas9 system have demonstrated it to be an efficient gene-editing technology for various organisms. Laboratory mice and rats are widely used as common models of human diseases; however, the current standard method to create genome-engineered animals is laborious and involves three major steps: isolation of zygotes from females, ex vivo micromanipulation of zygotes, and implantation into pseudopregnant females. To circumvent this, we recently developed a novel method named Genome-editing via Oviductal Nucleic Acids Delivery (GONAD). This method does not require the ex vivo handling of embryos; instead, it can execute gene editing with just one step, via the delivery of a genome-editing mixture into embryos in the oviduct, by electroporation. Here, we present a further improvement of GONAD that is easily applicable to both mice and rats. It is a rapid, low-cost, and ethical approach fulfilling the 3R principles of animal experimentation: Reduction, Replacement, and Refinement. This method has been reconstructed and renamed as "improved GONAD (i-GONAD)" for mice, and "rat improved GONAD (rGONAD)" for rats.


Assuntos
Edição de Genes , Ácidos Nucleicos , Animais , Sistemas CRISPR-Cas/genética , Eletroporação , Feminino , Gônadas , Humanos , Camundongos , Oviductos , Ratos , Zigoto
11.
J Neurosci ; 39(34): 6781-6797, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31235644

RESUMO

Tau is a microtubule (MT)-associated protein that is localized to the axon. In Alzheimer's disease, the distribution of tau undergoes a remarkable alteration, leading to the formation of tau inclusions in the somatodendritic compartment. To investigate how this mislocalization occurs, we recently developed immunohistochemical tools that can separately detect endogenous mouse and exogenous human tau with high sensitivity, which allows us to visualize not only the pathological but also the pre-aggregated tau in mouse brain tissues of both sexes. Using these antibodies, we found that in tau-transgenic mouse brains, exogenous human tau was abundant in dendrites and somata even in the presymptomatic period, whereas the axonal localization of endogenous mouse tau was unaffected. In stark contrast, exogenous tau was properly localized to the axon in human tau knock-in mice. We tracked this difference to the temporal expression patterns of tau. Endogenous mouse tau and exogenous human tau in human tau knock-in mice exhibited high expression levels during the neonatal period and strong suppression into the adulthood. However, human tau in transgenic mice was expressed continuously and at high levels in adult animals. These results indicated the uncontrolled expression of exogenous tau beyond the developmental period as a cause of mislocalization in the transgenic mice. Superresolution microscopic and biochemical analyses also indicated that the interaction between MTs and exogenous tau was impaired only in the tau-transgenic mice, but not in knock-in mice. Thus, the ectopic expression of tau may be critical for its somatodendritic mislocalization, a key step of the tauopathy.SIGNIFICANCE STATEMENT Somatodendritic localization of tau may be an early step leading to the neuronal degeneration in tauopathies. However, the mechanisms of the normal axonal distribution of tau and the mislocalization of pathological tau remain obscure. Our immunohistochemical and biochemical analyses demonstrated that the endogenous mouse tau is transiently expressed in neonatal brains, that exogenous human tau expressed corresponding to such tau expression profile can distribute into the axon, and that the constitutive expression of tau into adulthood (e.g., human tau in transgenic mice) results in abnormal somatodendritic localization. Thus, the expression profile of tau is tightly associated with the localization of tau, and the ectopic expression of tau in matured neurons may be involved in the pathogenesis of tauopathy.


Assuntos
Química Encefálica/fisiologia , Encéfalo/citologia , Dendritos/fisiologia , Expressão Ectópica do Gene/genética , Proteínas tau/biossíntese , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Encéfalo/crescimento & desenvolvimento , Feminino , Técnicas de Introdução de Genes , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Cultura Primária de Células , Tauopatias/metabolismo
12.
Biol Reprod ; 103(2): 244-253, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32301969

RESUMO

Globozoospermia (sperm with an abnormally round head shape) and asthenozoospermia (defective sperm motility) are known causes of male infertility in human patients. Despite many studies, the molecular details of the globozoospermia etiology are still poorly understood. Serine-rich single-pass membrane protein 1 (Ssmem1) is a conserved testis-specific gene in mammals. In this study, we generated Ssmem1 knockout (KO) mice using the CRISPR/Cas9 system, demonstrated that Ssmem1 is essential for male fertility in mice, and found that SSMEM1 protein is expressed during spermatogenesis but not in mature sperm. The sterility of the Ssmem1 KO (null) mice is associated with globozoospermia and loss of sperm motility. To decipher the mechanism causing the phenotype, we analyzed testes with transmission electron microscopy and discovered that Ssmem1-disrupted spermatids have abnormal localization of Golgi at steps eight and nine of spermatid development. Immunofluorescence analysis with anti-Golgin-97 to label the trans-Golgi network, also showed delayed movement of the Golgi to the spermatid posterior region, which causes failure of sperm head shaping, disorganization of the cell organelles, and entrapped tails in the cytoplasmic droplet. In summary, SSMEM1 is crucial for intracellular Golgi movement to ensure proper spatiotemporal formation of the sperm head that is required for fertilization. These studies and the pathway in which SSMEM1 functions have implications for human male infertility and identifying potential targets for nonhormonal contraception.


Assuntos
Infertilidade Masculina/genética , Proteínas de Plasma Seminal/genética , Motilidade dos Espermatozoides/genética , Espermatogênese/genética , Teratozoospermia/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Espermatozoides/metabolismo
13.
Cell Commun Signal ; 18(1): 39, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143717

RESUMO

BACKGROUND: The (pro) renin receptor ((P)RR) plays important roles in various pathways, such as the Wnt/ß-catenin, renin-angiotensin system (RAS), MAPK/ERK and PI3K/AKT/mTOR pathways, that are involved in a wide range of physiological and pathological processes incorporating the tumorigenesis. However, our knowledge about (P) RR was mostly limited to its roles in cardiovascular and renal physiological functions and diseases. In the past 5 years, however, compelling evidence has revealed that (P) RR is aberrantly expressed in and contributes to the development of various cancers by different means. For instance, (P) RR was recently demonstrated to induce the oncogenesis of pancreatic, colorectal and brain cancers via the Wnt signaling, while promote the endometrial cancer and glioblastoma through the RAS. METHODS: Combining with the deep analysis of big data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, this review updates and summarizes the recent studies about the newly recognized roles of (P) RR in the pathophysiological processes of cancer development and its detailed functions through related pathways, as well as the novel research progress of (P) RR in related fields including the development and application of soluble (P) RR detection kit and monoclonal (P) RR antibody. RESULTS: This review provides an overview of the essential roles of (P) RR in the tumorigenesis and progression of various cancers and offers a translational outlook for the future research and clinical practices. CONCLUSION: (P) RR in the tumor tissues and/or body fluids of patients may be a novel and promising biomarker and potential therapeutic target for diagnosis, treatment and prognosis prediction in various cancers. Video Abstract.


Assuntos
Neoplasias/metabolismo , Receptores de Superfície Celular/fisiologia , ATPases Vacuolares Próton-Translocadoras/fisiologia , Biomarcadores Tumorais/fisiologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais
14.
BMC Biotechnol ; 18(1): 19, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29606116

RESUMO

BACKGROUND: Recent progress in development of the CRISPR/Cas9 system has been shown to be an efficient gene-editing technology in various organisms. We recently developed a novel method called Genome-editing via Oviductal Nucleic Acids Delivery (GONAD) in mice; a novel in vivo genome editing system that does not require ex vivo handling of embryos, and this technology is newly developed and renamed as "improved GONAD" (i-GONAD). However, this technology has been limited only to mice. Therefore in this study, we challenge to apply this technology to rats. RESULTS: Here, we determine the most suitable condition for in vivo gene delivery towards rat preimplantation embryos using tetramethylrhodamine-labelled dextran, termed as Rat improved GONAD (rGONAD). Then, to investigate whether this method is feasible to generate genome-edited rats by delivery of CRISPR/Cas9 components, the tyrosinase (Tyr) gene was used as a target. Some pups showed albino-colored coat, indicating disruption of wild-type Tyr gene allele. Furthermore, we confirm that rGONAD method can be used to introduce genetic changes in rat genome by the ssODN-based knock-in. CONCLUSIONS: We first establish the rGONAD method for generating genome-edited rats. We demonstrate high efficiency of the rGONAD method to produce knock-out and knock-in rats, which will facilitate the production of rat genome engineering experiment. The rGONAD method can also be readily applicable in mammals such as guinea pig, hamster, cow, pig, and other mammals.


Assuntos
Sistemas CRISPR-Cas , Tubas Uterinas/fisiologia , Edição de Genes/métodos , Ratos Transgênicos , Animais , Dextranos , Eletroporação , Feminino , Corantes Fluorescentes , Técnicas de Introdução de Genes , Masculino , Monofenol Mono-Oxigenase/genética , Mutação , Pigmentação/genética , Gravidez , Ratos Wistar , Rodaminas
15.
PLoS Biol ; 13(2): e1002070, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25723479

RESUMO

During sensory deprivation, the barrel cortex undergoes expansion of a functional column representing spared inputs (spared column), into the neighboring deprived columns (representing deprived inputs) which are in turn shrunk. As a result, the neurons in a deprived column simultaneously increase and decrease their responses to spared and deprived inputs, respectively. Previous studies revealed that dendritic spines are remodeled during this barrel map plasticity. Because cofilin1, a predominant regulator of actin filament turnover, governs both the expansion and shrinkage of the dendritic spine structure in vitro, it hypothetically regulates both responses in barrel map plasticity. However, this hypothesis remains untested. Using lentiviral vectors, we knocked down cofilin1 locally within layer 2/3 neurons in a deprived column. Cofilin1-knocked-down neurons were optogenetically labeled using channelrhodopsin-2, and electrophysiological recordings were targeted to these knocked-down neurons. We showed that cofilin1 knockdown impaired response increases to spared inputs but preserved response decreases to deprived inputs, indicating that cofilin1 dependency is dissociated in these two types of barrel map plasticity. To explore the structural basis of this dissociation, we then analyzed spine densities on deprived column dendritic branches, which were supposed to receive dense horizontal transcolumnar projections from the spared column. We found that spine number increased in a cofilin1-dependent manner selectively in the distal part of the supragranular layer, where most of the transcolumnar projections existed. Our findings suggest that cofilin1-mediated actin dynamics regulate functional map plasticity in an input-specific manner through the dendritic spine remodeling that occurs in the horizontal transcolumnar circuits. These new mechanistic insights into transcolumnar plasticity in adult rats may have a general significance for understanding reorganization of neocortical circuits that have more sophisticated columnar organization than the rodent neocortex, such as the primate neocortex.


Assuntos
Cofilina 1/genética , Espinhas Dendríticas/metabolismo , Neocórtex/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/metabolismo , Sinapses/metabolismo , Actinas/química , Actinas/genética , Actinas/metabolismo , Potenciais de Ação/fisiologia , Animais , Channelrhodopsins , Cofilina 1/antagonistas & inibidores , Cofilina 1/metabolismo , Espinhas Dendríticas/genética , Espinhas Dendríticas/ultraestrutura , Expressão Gênica , Técnicas de Silenciamento de Genes , Vetores Genéticos , Células HEK293 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Neocórtex/ultraestrutura , Optogenética , Células PC12 , Ratos , Ratos Wistar , Privação Sensorial/fisiologia , Córtex Somatossensorial/ultraestrutura , Sinapses/genética , Sinapses/ultraestrutura
16.
Proc Natl Acad Sci U S A ; 112(22): E2947-56, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25991858

RESUMO

Pathway-specific gene delivery is requisite for understanding complex neuronal systems in which neurons that project to different target regions are locally intermingled. However, conventional genetic tools cannot achieve simultaneous, independent gene delivery into multiple target cells with high efficiency and low cross-reactivity. In this study, we systematically screened all receptor-envelope pairs resulting from the combination of four avian sarcoma leukosis virus (ASLV) envelopes (EnvA, EnvB, EnvC, and EnvE) and five engineered avian-derived receptors (TVA950, TVB(S3), TVC, TVB(T), and DR-46TVB) in vitro. Four of the 20 pairs exhibited both high infection rates (TVA-EnvA, 99.6%; TVB(S3)-EnvB, 97.7%; TVC-EnvC, 98.2%; and DR-46TVB-EnvE, 98.8%) and low cross-reactivity (<2.5%). Next, we tested these four receptor-envelope pairs in vivo in a pathway-specific gene-transfer method. Neurons projecting into a limited somatosensory area were labeled with each receptor by retrograde gene transfer. Three of the four pairs exhibited selective transduction into thalamocortical neurons expressing the paired receptor (>98%), with no observed cross-reaction. Finally, by expressing three receptor types in a single animal, we achieved pathway-specific, differential fluorescent labeling of three thalamic neuronal populations, each projecting into different somatosensory areas. Thus, we identified three orthogonal pairs from the list of ASLV subgroups and established a new vector system that provides a simultaneous, independent, and highly specific genetic tool for transferring genes into multiple target cells in vivo. Our approach is broadly applicable to pathway-specific labeling and functional analysis of diverse neuronal systems.


Assuntos
Vírus do Sarcoma Aviário/genética , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vias Neurais/citologia , Receptores Virais/metabolismo , Proteínas do Envelope Viral , Animais , Citometria de Fluxo , Células HEK293 , Humanos , Microscopia de Fluorescência , Ratos , Receptores Virais/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
17.
J Biol Chem ; 290(21): 12984-98, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25847236

RESUMO

Tetraploidy, a state in which cells have doubled chromosomal sets, is observed in ∼20% of solid tumors and is considered to frequently precede aneuploidy in carcinogenesis. Tetraploidy is also detected during terminal differentiation and represents a hallmark of aging. Most tetraploid cultured cells are arrested by p53 stabilization. However, the fate of tetraploid cells in vivo remains largely unknown. Here, we analyze the ability to repair wounds in the skin of phosphovimentin-deficient (VIM(SA/SA)) mice. Early into wound healing, subcutaneous fibroblasts failed to undergo cytokinesis, resulting in binucleate tetraploidy. Accordingly, the mRNA level of p21 (a p53-responsive gene) was elevated in a VIM(SA/SA)-specific manner. Disappearance of tetraploidy coincided with an increase in aneuploidy. Thereafter, senescence-related markers were significantly elevated in VIM(SA/SA) mice. Because our tetraploidy-prone mouse model also exhibited subcutaneous fat loss at the age of 14 months, another premature aging phenotype, our data suggest that following cytokinetic failure, a subset of tetraploid cells enters a new cell cycle and develops into aneuploid cells in vivo, which promote premature aging.


Assuntos
Aneuploidia , Citocinese , Envelhecimento da Pele/patologia , Gordura Subcutânea/patologia , Tetraploidia , Vimentina/fisiologia , Animais , Western Blotting , Ciclo Celular , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose/fisiologia , Fosforilação , Gordura Subcutânea/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Cicatrização
18.
J Biol Chem ; 289(45): 31526-33, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25253698

RESUMO

Renal fibrosis is responsible for progressive renal diseases that cause chronic renal failure. Sfrp1 (secreted Frizzled-related protein 1) is highly expressed in kidney, although little is known about connection between the protein and renal diseases. Here, we focused on Sfrp1 to investigate its roles in renal fibrosis using a mouse model of unilateral ureteral obstruction (UUO). In wild-type mice, the expression of Sfrp1 protein was markedly increased after UUO. The kidneys from Sfrp1 knock-out mice showed significant increase in expression of myofibrobast markers, α-smooth muscle actin (αSMA). Sfrp1 deficiency also increased protein levels of the fibroblast genes, vimentin, and decreased those of the epithelial genes, E-cadherin, indicated that enhanced epithelial-to-mesenchymal transition. There was no difference in the levels of canonical Wnt signaling; rather, the levels of phosphorylated c-Jun and JNK were more increased in the Sfrp1(-/-) obstructed kidney. Moreover, the apoptotic cell population was significantly elevated in the obstructed kidneys from Sfrp1(-/-) mice following UUO but was slightly increased in those from wild-type mice. These results indicate that Sfrp1 is required for inhibition of renal damage through the non-canonical Wnt/PCP pathway.


Assuntos
Fibrose/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Nefropatias/metabolismo , Proteínas de Membrana/fisiologia , Obstrução Ureteral/patologia , Animais , Caderinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Transição Epitelial-Mesenquimal , Fibroblastos/metabolismo , Deleção de Genes , Células HEK293 , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Obstrução Ureteral/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
19.
J Biol Chem ; 288(50): 35626-35, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24142690

RESUMO

Vimentin, a type III intermediate filament (IF) protein, is phosphorylated predominantly in mitosis. The expression of a phosphorylation-compromised vimentin mutant in T24 cultured cells leads to cytokinetic failure, resulting in binucleation (multinucleation). The physiological significance of intermediate filament phosphorylation during mitosis for organogenesis and tissue homeostasis was uncertain. Here, we generated knock-in mice expressing vimentin that have had the serine sites phosphorylated during mitosis substituted by alanine residues. Homozygotic mice (VIM(SA/SA)) presented with microophthalmia and cataracts in the lens, whereas heterozygotic mice (VIM(WT/SA)) were indistinguishable from WT (VIM(WT/WT)) mice. In VIM(SA/SA) mice, lens epithelial cell number was not only reduced but the cells also exhibited chromosomal instability, including binucleation and aneuploidy. Electron microscopy revealed fiber membranes that were disorganized in the lenses of VIM(SA/SA), reminiscent of similar characteristic changes seen in age-related cataracts. Because the mRNA level of the senescence (aging)-related gene was significantly elevated in samples from VIM(SA/SA), the lens phenotype suggests a possible causal relationship between chromosomal instability and premature aging.


Assuntos
Aneuploidia , Catarata/etiologia , Catarata/metabolismo , Senescência Celular , Endoftalmite/etiologia , Endoftalmite/metabolismo , Células Epiteliais/patologia , Mitose , Vimentina/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Catarata/genética , Catarata/patologia , Núcleo Celular/patologia , Endoftalmite/genética , Endoftalmite/patologia , Células Epiteliais/metabolismo , Técnicas de Introdução de Genes , Cristalino/patologia , Camundongos , Dados de Sequência Molecular , Fosforilação , Vimentina/química , Vimentina/genética
20.
Open Biol ; 14(3): 230440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442865

RESUMO

Microtubule organization and reorganization during the cell cycle are achieved by regulation of the number, distribution and activity of microtubule-organizing centres (MTOCs). In fission yeast, the Mto1/2 complex determines the activity and distribution of cytoplasmic MTOCs. Upon mitosis, cytoplasmic microtubule nucleation ceases; inactivation of the Mto1/2 complex is triggered by Mto2 hyperphosphorylation. However, the protein kinase(s) that phosphorylates Mto2 remains elusive. Here we show that a conserved signalling network, called MOR (morphogenesis Orb6 network) in fission yeast, negatively regulates cytoplasmic MTOCs through Mto2 phosphorylation to ensure proper microtubule organization. Inactivation of Orb6 kinase, the most downstream MOR component, by attenuation of MOR signalling leads to reduced Mto2 phosphorylation, coincident with increased number of both Mto2 puncta and cytoplasmic microtubules. These defects cause the emergence of uncoordinated mitotic cells with cytoplasmic microtubules, resulting in reduced spindle assembly. Thus, the regulation of Mto2 by the MOR is crucial for cytoplasmic microtubule organization and contributes to reorganization of the microtubule cytoskeletons during the cell cycle.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Ciclo Celular , Mitose , Fosforilação , Microtúbulos , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular , Proteínas de Schizosaccharomyces pombe/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA